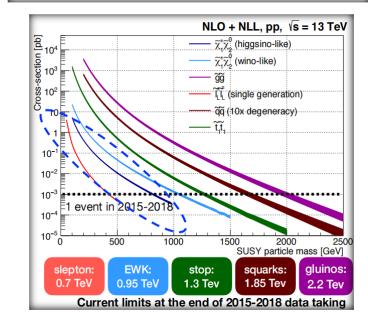
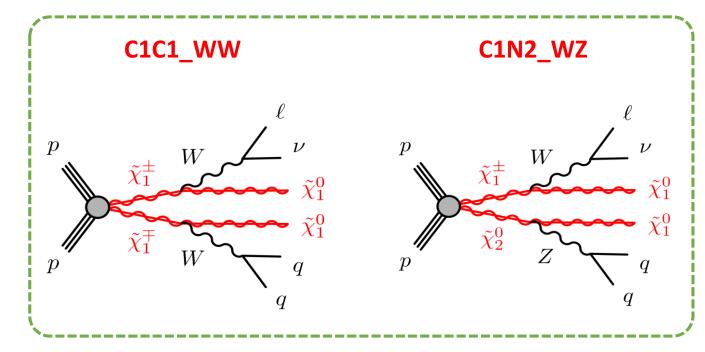
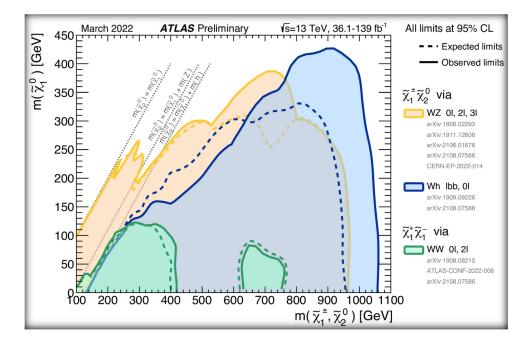

Search for direct production of electroweakinos in final states with one lepton, jets and missing transverse momentum with ATLAS detector


Mingjie Zhai (IHEP, CAS) 2022.11.25 CLHCP (2022)

Introduction

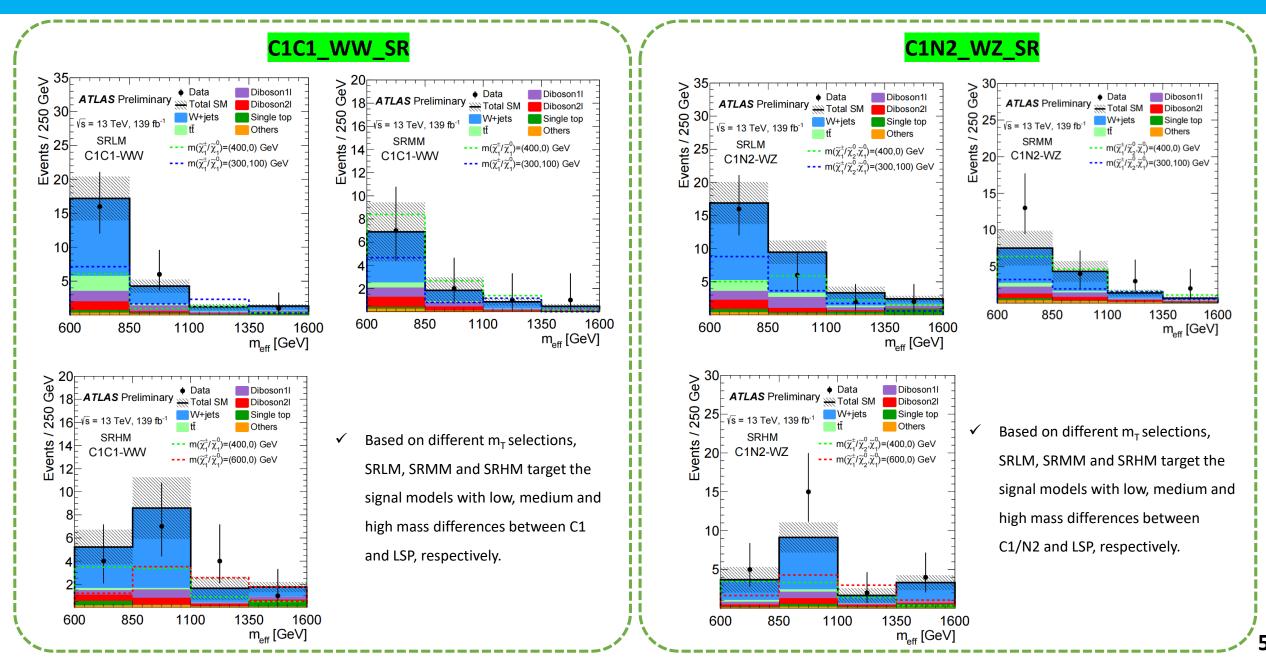
- Standard model (SM) :
 - Advantage: Precisely describes the fundamental elements of the matter and the interactions between them.
 - Problems: hierarchy problem, grand unification of gauge couplings, dark matter... -> BSM physics is strongly motivated.
- Supersymmetry (SUSY): one of the most appealing BSM theories.
 - Introduce new symmetry between bosons and fermions.
 - No SUSY particles were discovered so far. -> Limits at LHC.





Introduction

- This is the EWK 1L analysis, targeting direct EWK production of **chargino pairs** and **chargino-neutralino pairs**, decaying **into LSP via W/Z boson**.
 - Final state: exactly one isolated lepton (ele or mu), jets and large missing transverse momentum.
 - Targeting full Run 2 data of 139 fb⁻¹.
 - The first time studying C1C1->WW/C1N2->WZ using exactly one lepton final state.
 - Use large-R jet with W/Z boson tagging to improve sensitivity.

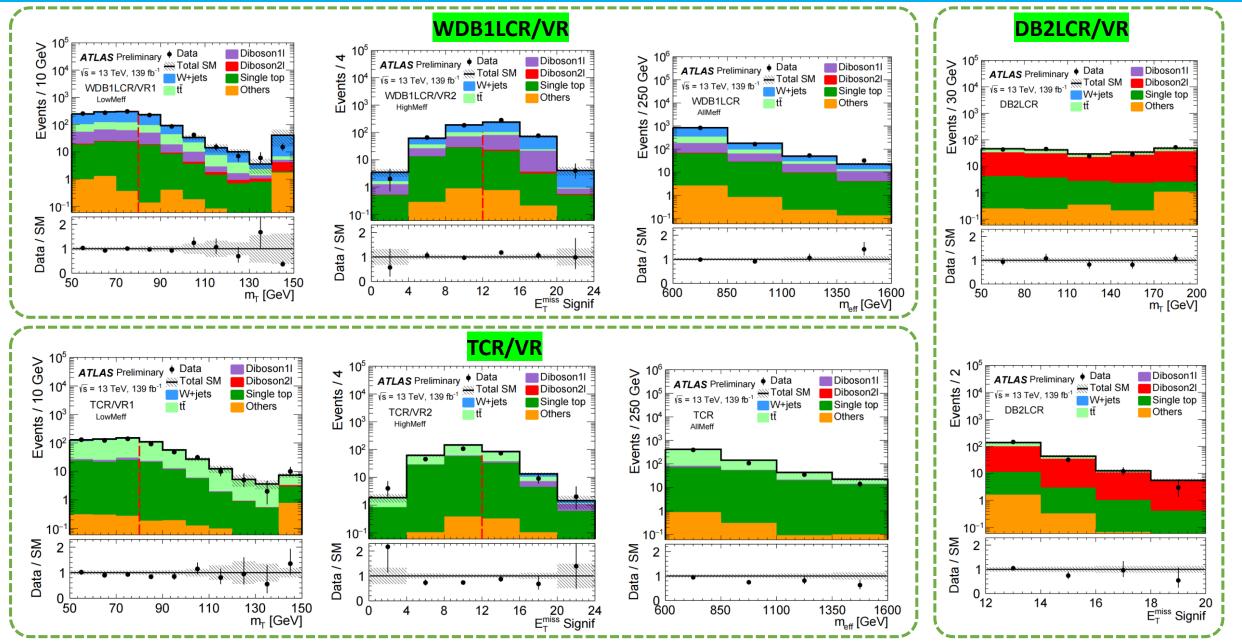


Event selection

Variable	C1C1-WW model		C1N2-WZ model			
	SRLM	SRMM	SRHM	SRLM	SRMM	SRHM
$N_{\text{lep}} (p_{\text{T}} > 25 \text{ GeV})$]	1		
$N_{\rm jet} (p_{\rm T} > 30 {\rm GeV})$			1 -	- 3		
$N_{\text{large-Rjet}} (p_{\text{T}} > 250 \text{ GeV})$			≥	1		
$E_{\rm T}^{\rm miss}$ [GeV]			> 2	200		
$\Delta \phi(\ell, \mathrm{E}_\mathrm{T}^\mathrm{miss})$			< 2	2.6		
large-R jet type		W-tagged			Z-tagged	
$m_{\rm T} [{\rm GeV}]$	120-200	200-300	> 300	120–200	200-300	> 300
			Exclus	ion SR		
$m_{\rm eff}$ [GeV] (excl.)	[60	0-850, > 85	50]	[60	0-850, > 85	50]
m_{jj} [GeV] (excl.)		[70–90, -]		[80–100, -]	
$\sigma_{E_{T}^{\mathrm{miss}}}$ (excl.)	[> 12, > 15]		[> 12, > 12]	
			Discov	ery SR		
$m_{\rm eff}$ [GeV] (disc.)	> 600	> 600	> 850	> 600	> 850	> 850
m_{jj} [GeV] (disc.)	-	-	-	80-100	-	-
$\sigma_{E_{r}^{\text{miss}}}$ (disc.)	> 15	> 15	> 15	> 12	> 12	> 12

- ✓ The main difference between C1C1 and C1N2 signal scenarios is the large-R jet boson tagging type. For each model, LM, MM, HM SRs are defined using m_T
- ✓ Exclusion SRs are designed for setting model-dependent exclusion limits. Two-dimensional multi-bin SR of m_T and m_{eff} are defined targeting the different mass differences between C1/N2 and LSP.
- Discovery SRs are constructed for model-independent
 limits. Meff bins are merged for each SR.

Event selection


Background estimation

- Dominant background: W+jets (46-73%), diboson(16-39%) and $t\bar{t}$ processes(2-17%).
 - Define dedicated CRs, validated in VRs.
 - W+jets and Diboson1L (lvvv) are estimated in the same WDB1LCR (similar behavior)
 - ttbar is estimated in TCR (similar to WDB1LCR but different Nbjet)
 - Diboson 2L (Ilvv) is estimated in a DB2L CR
- Small background: Z+jets, single-top, multiboson, $t\bar{t}$ +V, $t\bar{t}$ + H and VH.

Variable	WDB1L and T		
	CR VR1 VR2		
$N_{\text{lep}} (p_{\text{T}} > 25 \text{ GeV})$	1		
$N_{\rm jet} \ (p_{\rm T} > 30 {\rm ~GeV})$	1 - 3		
$N_{\rm b-jet} (p_{\rm T} > 30 {\rm ~GeV})$	0 for WDB1L; > 0 for Top		
$V_{\text{large-Rjet}} (p_{\text{T}} > 250 \text{ GeV})$	≥ 1		
$E_{\rm T}^{\rm miss}$ [GeV]	> 200		
$\Delta \phi(\ell, \mathrm{E}_\mathrm{T}^\mathrm{miss})$	< 2.9		
large-R jet type	W-tagged		
$m_{\rm eff}$ [GeV]	[600-850,> 850]		
$\sigma_{E_{ au}^{ ext{miss}}}$	< 12 < 12 > 12		
$m_{\rm T}$ [GeV]	50 - 80 > 80 = 50 - 120		

Variable	DB2L
variable	CR VR
$N_{\text{lep}} (p_{\text{T}} > 25 \text{ GeV})$	2
$N_{\rm jet} \ (p_{\rm T} > 30 \ {\rm GeV})$	1 - 3
$N_{\rm b-jet} \ (p_{\rm T} > 30 {\rm ~GeV})$	0
$E_{\rm T}^{\rm miss}$ [GeV]	> 200
$\Delta \phi(\ell, E_{\rm T}^{\rm miss})$	< 2.9
$m_{\ell\ell}$ [GeV]	70 - 100
<i>m</i> _{jj} veto [GeV]	75 – 95
$\sigma_{E_{ ext{T}}^{ ext{miss}}}$	> 12 > 10
$m_{\rm T}$ [GeV]	50 - 200 200 - 350

Background estimation

Systematic Uncertainties

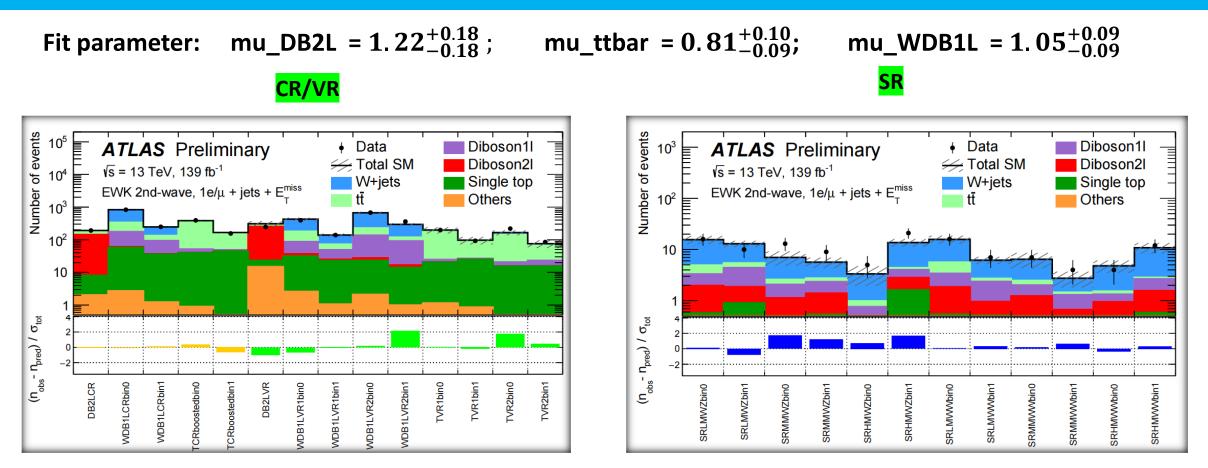
C1C1-WW

C1C1-WW model	SRLM	SRMM	SRHM
Total background expectation	21.96	9.19	15.65
Total background sytematic	±3.19 [14.54%]	±2.51 [27.29%]	±3.04 [19.40%]
Theoreti	cal systematic uncerta	ainties	
tī	±1.07 [4.88%]	±0.25 [2.71%]	±0.15 [0.96%]
Single top	±0.31 [1.43%]	±0.08 [0.92%]	±0.35 [2.21%]
W+jets	±0.38 [1.73%]	±0.15 [1.59%]	±0.32 [2.04%]
Diboson	±0.29 [1.34%]	±0.24 [2.66%]	±0.26 [1.63%]
Other backgrounds	±0.10 [0.43%]	±0.07 [0.77%]	$\pm 0.08 \ [0.53\%]$
MC	statistical uncertaintie	es	
MC statistics	±2.09 [9.54%]	±1.61 [17.51%]	±2.07 [13.20%]
Uncertainties	in the background no	rmalisation	
Normalisation of dominant backgrounds	±1.48 [6.76%]	±0.62 [6.76%]	±1.12 [7.19%]
Experime	ental systematic uncer	tainties	
Jet energy resolution	±1.09 [4.99%]	±1.01 [11.03%]	±1.38 [8.81%]
Jet energy scale	±1.65 [7.51%]	±1.52 [16.54%]	±1.12 [7.19%]
$E_{\rm T}^{\rm miss}$	±0.51 [2.34%]	±0.26 [2.80%]	±0.59 [3.76%]
Lepton uncertainties	±0.41 [1.88%]	±0.10 [1.04%]	±0.48 [3.08%]
Pile-up/JVT	±0.10 [0.48%]	±0.21 [2.29%]	±0.23 [1.49%]

SRLM	SRMM	SRHM		
28.53	12.67	17.03		
±3.68 [12.91%]	±2.54 [20.06%]	±2.85 [16.71%]		
cal systematic uncerta	ainties			
±0.85 [2.97%]	±0.29 [2.33%]	±0.20 [1.18%]		
±1.06 [3.73%]	±0.24 [1.90%]	±0.52 [3.07%]		
±0.56 [1.97%]	±0.22 [1.76%]	±0.36 [2.10%]		
±0.48 [1.67%]	±0.24 [1.87%]	±0.58 [3.39%]		
±0.15 [0.54%]	±0.18 [1.41%]	±0.09 [0.51%]		
statistical uncertaintie	es			
±2.53 [8.88%]	±1.44 [11.39%]	±2.10 [12.32%]		
Uncertainties in the background normalisation				
±1.96 [6.86%]	±0.83 [6.55%]	±1.16 [6.83%]		
ental systematic uncer	tainties			
±1.10 [3.85%]	±1.27 [10.03%]	±0.79 [4.63%]		
±1.28 [4.47%]	±0.99 [7.80%]	±1.25 [7.37%]		
±0.49 [1.70%]	±0.57 [4.47%]	±0.07 [0.39%]		
±0.34 [1.18%]		$\pm 0.20 [1.17\%]$		
±0.06 [0.20%]	±0.79 [6.24%]	±0.11 [0.63%]		
	$\begin{array}{c} 28.53\\ \pm 3.68 \ [12.91\%]\\ \hline cal systematic uncerta\\ \pm 0.85 \ [2.97\%]\\ \pm 1.06 \ [3.73\%]\\ \pm 0.56 \ [1.97\%]\\ \pm 0.48 \ [1.67\%]\\ \pm 0.15 \ [0.54\%]\\ \hline statistical uncertaintie\\ \pm 2.53 \ [8.88\%]\\ \hline in the background no\\ \pm 1.96 \ [6.86\%]\\ \hline ental systematic uncert\\ \pm 1.10 \ [3.85\%]\\ \pm 1.28 \ [4.47\%]\\ \pm 0.34 \ [1.18\%]\\ \end{array}$	28.53 12.67 $\pm 3.68 [12.91\%]$ $\pm 2.54 [20.06\%]$ cal systematic uncertainties $\pm 0.85 [2.97\%]$ $\pm 0.29 [2.33\%]$ $\pm 1.06 [3.73\%]$ $\pm 0.24 [1.90\%]$ $\pm 0.56 [1.97\%]$ $\pm 0.22 [1.76\%]$ $\pm 0.48 [1.67\%]$ $\pm 0.24 [1.87\%]$ $\pm 0.15 [0.54\%]$ $\pm 0.18 [1.41\%]$ statistical uncertainties $\pm 2.53 [8.88\%]$ $\pm 1.44 [11.39\%]$ in the background normalisation $\pm 1.96 [6.86\%]$ $\pm 0.83 [6.55\%]$ ental systematic uncertainties $\pm 1.10 [3.85\%]$ $\pm 1.27 [10.03\%]$ $\pm 1.28 [4.47\%]$ $\pm 0.99 [7.80\%]$ $\pm 0.49 [1.70\%]$ $\pm 0.34 [1.18\%]$ $\pm 0.23 [1.79\%]$		

- ✓ The uncertainties in the Normalization of dominate background contribute 6 7% for each SR.
- ✓ The largest individual experimental uncertainty amounts to 4 16% depending on the SR.
- \checkmark The MC statistical uncertainties contribute 8 17% depending on the SR.

Fit strategy

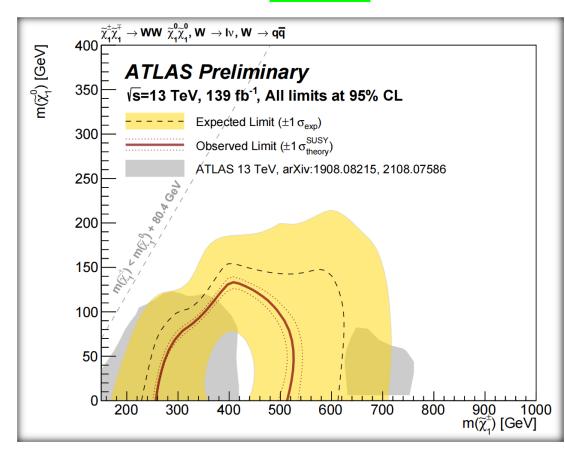

- Background only fit:
 - Only the CRs are used to constrain the fit parameters. Any potential signal contribution is neglected

everywhere. -> To calculate background estimation in SRs and VRs.

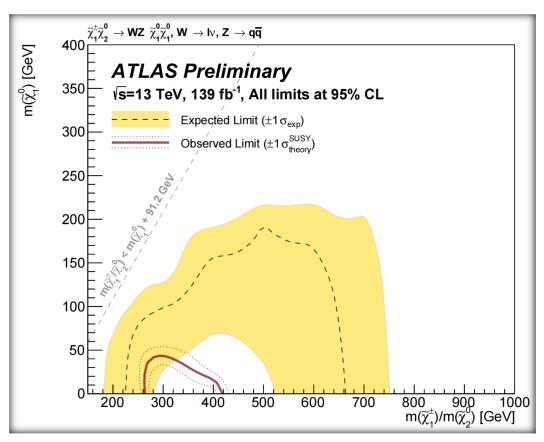
- Model-dependent fit:
 - Both CRs and SRs are used in the fit. The signal contribution is taken into account as predicted by

the tested model in all the regions. -> To calculate the exclusion limits.

Results --- Region pull plots



- ✓ No significant excess over the SM prediction is observed in SRs targeting the C1C1-WW model.
- ✓ Mild excesses are seen in some SRs targeting the C1N2-WZ model.
- \checkmark Combining the low and high meff bins of SRMM for C1N2-WZ model leads to a significance of around 2.1 σ .


Results --- Limit

C1C1-WW

- \checkmark The $\widetilde{\chi}_1^{\pm}$ mass of about 260 520 GeV is excluded for massless $\widetilde{\chi}_1^0$.
- ✓ Limits improve about 100GeV for m($\tilde{\chi}_1^{\pm}$) compared to previous ATLAS limits.

- ✓ The observed limit is weaker than expected limit.
- ✓ The $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ mass of about 260 420 GeV is excluded for massless $\tilde{\chi}_1^0$.

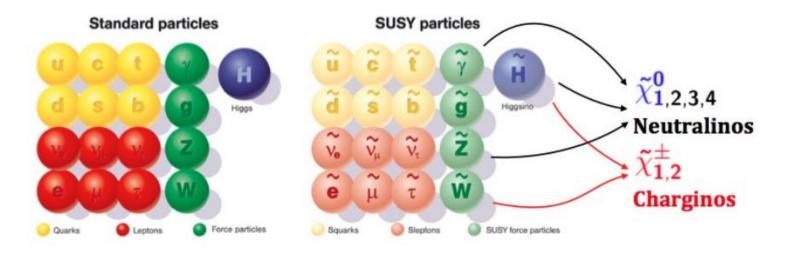
Summary

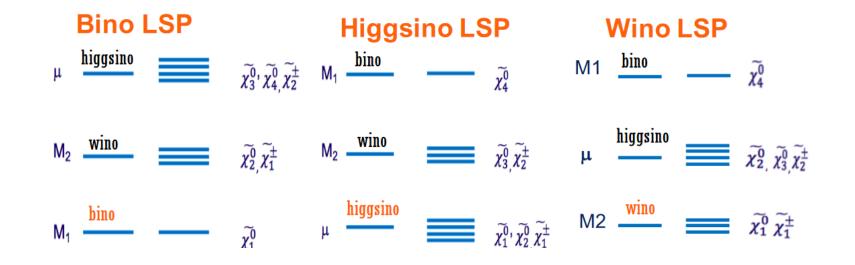
- Presented a search for direct EWK production of C1C1/C1N2, decaying to 1L via W/Z and LSP.
- The search is performed in events with one isolated lepton, jets and E_T^{miss} based on full Run-2 data.
- No significant deviation from the expected Standard Model background is observed.
- A chargino/neutralino of mass 260 520GeV can be excluded in C1C1 WW scenario and **260 - 420GeV** can be excluded for C1N2 WZ scenario with massless LSP at 95% CL.
- The current search improves on the previous ATLAS limit by around 100GeV in m($\tilde{\chi}_1^{\pm}$) for a massless $\tilde{\chi}_0^{\pm}$ (C1C1_WW scenario).
- More details in CONF-NOTE (<u>https://cds.cern.ch/record/2826702</u>).

ATLAS-CONF-20

ATLAS CONF Note ATLAS-CONF-2022-059 1st September 2022

Search for direct production of electroweakinos in final states with one lepton, jets and missing transverse momentum and in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector


The ATLAS Collaboration


Two searches for electroweak production of chargino-neutralino, $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$, and chargino-chargino, $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, pairs are presented. In both scenarios the chargino decays into a W boson and the lightest neutralino $\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$, and second-to-lightest neutralino decays into a Z boson and the lightest neutralino $\tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$. The signal signature for both processes is characterized by a single isolated lepton, at least two jet, and missing transverse energy. The searches use 139 fb⁻¹ of \sqrt{s} = 13 TeV proton–proton collisions data collected by the ATLAS detector at the Large Hadron Collider between 2015 and 2018. The searches observed no deviation with respect to the Standard Model expectations, and exclusion limits have been set in the $(m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0), m(\tilde{\chi}_1^0))$ mass plane. For the $\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{-}$ model, chargino masses ranging from 260 to 520 GeV can be excluded for a massless $\tilde{\chi}_1^0$ at 95% CL, while for the $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ process, degenerate chargino/neutralino masses ranging from 260 to 420 GeV can be excluded for a massless $\tilde{\chi}_1^0$ at 95% CL.

© 2022 CERN for the benefit of the ATLAS Collaboration Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Backup

SUSY EWK model

Data and simulated samples

- Data: full Run-2 data, corresponding to 139 fb^{-1} data collected between 2015 and 2018.
- Background samples:

Table 1: Simulated background MC samples used in this analysis with the corresponding matrix element and parton shower generators, underlying-event tune, PDF set, and cross-section order in α_s .

Process	Generator	Parton shower and	Tune	PDF	Cross-section
		hadronisation			
tī	Роwнед Вох v2 [63–66]	Рутніа 8.230 [43]	A14 [57]	NNPDF2.3LO [44]	NNLO+NNLL [67]
Single top	Роwнед Вох v2 [68–70]	Рутніа 8.230	A14	NNPDF2.3LO	NLO+NNLL [71]
W/Z+jets	Sherpa 2.2.11 [72]	Sherpa 2.2.11	SHERPA standard	NNPDF3.0NNLO	NNLO [73]
Diboson	Sherpa 2.2.1 [72] & 2.2.2	Sherpa 2.2.1 & 2.2.2	SHERPA standard	NNPDF3.0NNLO	NLO
Multiboson	Sherpa 2.2.1 & 2.2.2	Sherpa 2.2.1 & 2.2.2	SHERPA standard	NNPDF3.0NNLO	NLO
$t\bar{t} + V$	MADGRAPH5_aMC@NLO v2.3.3	Рутніа 8.210	A14	NNPDF2.3LO	NLO [74]
$t\bar{t} + h$	Powheg Box v2	Рутніа 8.230	AZNLO [75]	CTEQ6L1 [76]	NLO [77]
Vh	Powheg Box v2	Рутніа 8.212	A14	NNPDF2.3LO	NLO [77]

- Signal samples:
 - LSP is bino-like; $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ are wino-like and mass-degenerate
 - Generated using aMC@NLO +Pythia 8. Cross sections calculated at NLO+NLL.
 - The production cross-section of both processes decreases as the mass of the $\tilde{\chi}_1^{\pm}$ increases.
 - The cross-section is 0.62 fb (1.34fb) for C1N2(1000,0) and C1C1(1000,0).

Object reconstruction

Cut	Value/description			
I	Preselected jet			
Algorithm	anti- k_t -4, EMPFlow			
Acceptance	$p_{\rm T} > 20 {\rm GeV}, \eta < 4.5$			
Signal jet				
Acceptance	$p_{\rm T} > 30 {\rm GeV}, \eta < 2.8$			
JetVertexTagger	JVT @ tight working point			
	for $p_{\rm T} < 60 {\rm GeV}$ and $ \eta < 2.4$			
	Signal <i>b</i> -jet			
<i>b</i> -tagger Algorithm	DL1r @ 77 % PC working point			
Acceptance	$p_{\rm T} > 30 {\rm GeV}, \eta < 2.8$			

Cut	Value/description				
Pı	Preselected Electron				
Algorithm	AuthorElectron				
Acceptance	$p_{\rm T} > 7 {\rm GeV}, \eta^{\rm clust} < 2.47$				
Quality	LooseAndBLayerLLH				
IP	$ \Delta z_0 \sin(\theta) < 0.5 \text{ mm}$				
	Signal Electron				
Acceptance	$p_{\rm T} > 7 {\rm GeV}, \eta^{\rm clust} < 2.47$				
Quality	TightLLH				
Isolation	PLVLoose for $p_{\rm T} < 75 {\rm GeV}$				
	PLVTight for $p_{\rm T} > 75 {\rm GeV}$				
IP	$d_0/\sigma(d_0) < 5$				

Cut	Value/description			
	Preselected muon			
Acceptance	$p_{\rm T} > 6 { m GeV}, \eta < 2.7$			
Quality	Medium			
IP	$ \Delta z_0 \sin(\theta) < 0.5 \text{ mm}$			
	Signal muon			
Acceptance	$p_{\rm T} > 6 { m GeV}, \eta < 2.5$			
Isolation	PLVLoose for $p_{\rm T} < 75 {\rm GeV}$			
	PflowTight_VarRad for $p_{\rm T} > 75 \text{GeV}$			
IP	$d_0/\sigma(d_0) < 3$			

Large-R Jet

- Anti- k_t algorithm (R = 1.0)
- Trimmed with $f_{cut} = 0.05$ and $R_{sub} = 0.2$
- $p_{_{\rm T}}\!>200$ GeV; $|\eta|<2.0$
- **W/Z-tagging**: 3-var, 50% WP

Met

- baseline objects + TST.
- Tight WP.

 AnalysisOverlap removal procedure applied to baseline objects and relied on SUSY background forum recommendation.

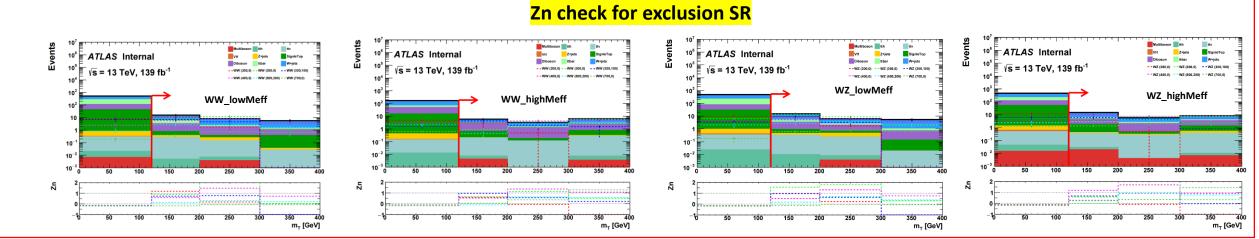
✓ Dedicated isolation study performed for electron/muon identification.

trigger

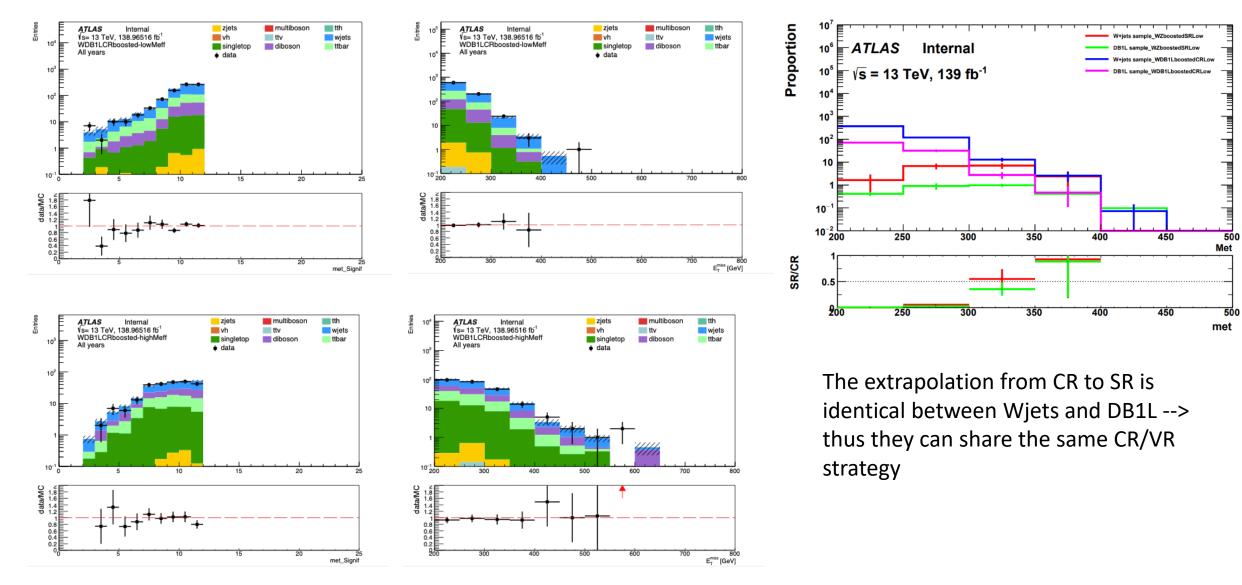
• Events are recorded with the ORing of a list of single lepton (electron and muon) triggers.

Trigger	Trigger name	Year	HLT cut [GeV]	Offline cut [GeV]
HLT_e24_lhmedium_L1EM20VH		2015	24	25
	HLT_e60_lhmedium	2015	60	61
	HLT_e120_lhloose	2015	120	121
single electron trigger	HLT_e26_lhtight_nod0_ivarloose	2016-2018	26	27
	HLT_e60_lhmedium_nod0	2016-2018	60	61
	HLT_e140_lhloose_nod0	2016-2018	140	141
	HLT_mu20_iloose_L1MU15	2015	20	21
single muon trigger	HLT_mu26_ivarmedium	2016-2018	26	27.3
	HLT_mu50	2015-2018	50	52.5

• Key variable:


$$m_{jj} = \sqrt{2p_{T}^{j_{1}}p_{T}^{j_{2}}} \left[\cosh\left(\eta_{j_{1}} - \eta_{j_{2}}\right) - \cos\left(\phi_{j_{1}} - \phi_{j_{2}}\right)\right] \qquad m_{T} = \sqrt{2p_{T}^{\ell}E_{T}^{\text{miss}}(1 - \cos[\Delta\phi(\boldsymbol{p}_{T}^{\ell}, \boldsymbol{p}_{T}^{\text{miss}})])$$

$$\sigma_{E_{\mathrm{T}}^{\mathrm{miss}}} = \sqrt{2 \ln \left[\frac{\max_{\boldsymbol{p}_{\mathrm{T}}^{\mathrm{inv}} \neq 0} \mathcal{L} \left(E_{\mathrm{T}}^{\mathrm{miss}} | \boldsymbol{p}_{\mathrm{T}}^{\mathrm{inv}} \right)}{\max_{\boldsymbol{p}_{\mathrm{T}}^{\mathrm{inv}} = 0} \mathcal{L} \left(E_{\mathrm{T}}^{\mathrm{miss}} | \boldsymbol{p}_{\mathrm{T}}^{\mathrm{inv}} \right)} \right]}$$


$$m_{\rm eff} = p_{\rm T}^{\ell} + \sum_{\rm jets} p_{\rm T} + E_{\rm T}^{\rm miss}$$

Signal region optimization

- Step 1: Multi-dimensional cut scan for benchmark signal points is performed to seed the subsequent steps of the
 optimization procedure. The significance is calculated using *RooStats :: NumberCountingUtils :: BinomialExpZ*considering a combination of 30% systematics and statistical error.
- Step 2: "N-1 plots" are produced to check and refine the requirements defined at "Step 1" in each proposed SRs.
- Step 3: Binned m_T and meff SR candidates are tested under HF. A combination of 30% systematics and statistical error are used.

Background estimation: Wjets and DB1L

Pre-fit kinematic; stats err only

Systematic Uncertainties

- Theoretical uncertainty:
 - Signal:
 - factorization, renormalization, CKKW
 - Ttbar & single-top:
 - Parton Shower, Hard Scattering, ISR, FSR, interference between single-top Wt and ttbar production.
 - Wjets & Zjets:
 - Renorm, Factor, RenormFactor, PDF, CKKW, QSF, EWK correction.
 - Diboson1L & Diboson2L & ttV & tth & Vh:
 - Renorm, Factor, RenormFactor, PDF
 - For major bkgs with dedicated CRs (wjets, ttbar, Diboson1L, Diboson2L): uncertainty calculated based on transfer factor from CR to SR.
 - ✓ For small bkgs (zjets, Singletop, ttv, tth): Estimated using yields uncertainty. cross-section uncertainties are considered.

- Experimental uncertainty:
 - jet energy scale (JES)
 - jet energy resolution (JER)
 - E_T^{miss} modeling
 - lepton reconstruction and identification
 - pile-up/JVT

Systematic Uncertainties

Table 5: Breakdown of the dominant systematic uncertainties in background estimates in the various exclusion signal regions for the C1C1-WW model. The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty. The percentages show the size of the uncertainty relative to the total expected background.

Table 6: Breakdown of the dominant systematic uncertainties in background estimates in the various exclusion signal regions for the C1N2-WZ model. The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty. The percentages show the size of the uncertainty relative to the total expected background.

C1C1-WW model	SRLM	SRMM	SRHM	C1N2-WZ model
Total background expectation	21.96	9.19	15.65	Total background e
Total background sytematic	±3.19 [14.54%]	±2.51 [27.29%]	±3.04 [19.40%]	Total background s
Theoreti	ical systematic uncerta	ainties		
$\overline{t\overline{t}}$	±1.07 [4.88%]	±0.25 [2.71%]	±0.15 [0.96%]	tī
Single top	±0.31 [1.43%]	±0.08 [0.92%]	±0.35 [2.21%]	Single top
W+jets	±0.38 [1.73%]	±0.15 [1.59%]	±0.32 [2.04%]	W+jets
Diboson	±0.29 [1.34%]	±0.24 [2.66%]	±0.26 [1.63%]	Diboson
Other backgrounds	±0.10 [0.43%]	±0.07 [0.77%]	±0.08 [0.53%]	Other backgrounds
MC	statistical uncertaintie	es		
MC statistics	±2.09 [9.54%]	±1.61 [17.51%]	±2.07 [13.20%]	MC statistics
Uncertainties	in the background no	ormalisation		
Normalisation of dominant backgrounds	±1.48 [6.76%]	±0.62 [6.76%]	±1.12 [7.19%]	Normalisation of d
Experime	ental systematic uncer	tainties		
Jet energy resolution	±1.09 [4.99%]	±1.01 [11.03%]	±1.38 [8.81%]	Jet energy resolution
Jet energy scale	±1.65 [7.51%]	±1.52 [16.54%]	±1.12 [7.19%]	Jet energy scale
$E_{\mathrm{T}}^{\mathrm{miss}}$	±0.51 [2.34%]	±0.26 [2.80%]	±0.59 [3.76%]	$E_{\mathrm{T}}^{\mathrm{miss}}$
Lepton uncertainties	±0.41 [1.88%]	$\pm 0.10 [1.04\%]$	±0.48 [3.08%]	Lepton uncertaintie
Pile-up/JVT	±0.10 [0.48%]	±0.21 [2.29%]	±0.23 [1.49%]	Pile-up/JVT

C1N2-WZ model	SRLM	SRMM	SRHM
Total background expectation	28.53	12.67	17.03
Total background sytematic	±3.68 [12.91%]	±2.54 [20.06%]	±2.85 [16.71%]
Theoreti	ical systematic uncerta	ainties	
tī	±0.85 [2.97%]	±0.29 [2.33%]	±0.20 [1.18%]
Single top	±1.06 [3.73%]	±0.24 [1.90%]	±0.52 [3.07%]
W+jets	±0.56 [1.97%]	±0.22 [1.76%]	±0.36 [2.10%]
Diboson	±0.48 [1.67%]	±0.24 [1.87%]	±0.58 [3.39%]
Other backgrounds	±0.15 [0.54%]	±0.18 [1.41%]	$\pm 0.09 [0.51\%]$
MC	statistical uncertainti	es	
MC statistics	±2.53 [8.88%]	±1.44 [11.39%]	±2.10 [12.32%]
Uncertainties	in the background no	rmalisation	
Normalisation of dominant backgrounds	±1.96 [6.86%]	±0.83 [6.55%]	±1.16 [6.83%]
Experime	ental systematic uncer	tainties	
Jet energy resolution	±1.10 [3.85%]	±1.27 [10.03%]	±0.79 [4.63%]
Jet energy scale	±1.28 [4.47%]	±0.99 [7.80%]	±1.25 [7.37%]
E ^{miss}	±0.49 [1.70%]	±0.57 [4.47%]	±0.07 [0.39%]
Lepton uncertainties	±0.34 [1.18%]	±0.23 [1.79%]	±0.20 [1.17%]
Pile-up/JVT	±0.06 [0.20%]	±0.79 [6.24%]	$\pm 0.11 \ [0.63\%]$

- ✓ The uncertainties in the Normalization of dominate background contribute 6% -7% for each SR.
- ✓ The largest individual experimental uncertainty amounts to 4-16% depending on the SR.
- \checkmark The MC statistical uncertainties contribute 8 17% depending on the SR.

Model-independent fit

Table 9: Left to right: Observed events, total SM background, 95% CL upper limits on the visible cross section $(\langle \epsilon \sigma \rangle_{obs}^{95})$ and on the number of signal events (S_{obs}^{95}) . The fifth column (S_{exp}^{95}) shows the 95% CL upper limit on the number of signal events, given the expected number (and $\pm 1\sigma$ excursions on the expectation) of background events. The last three columns indicate the CL_B value and the discovery *p*-value (p(s = 0)) with the corresponding gaussian significance (Z). CL_B provides a measure of compatibility of the observed data with the 95% CL signal strength hypothesis relative to fluctuations of the background, and p(s = 0) measures compatibility of the observed data with the background-only (zero signal strength) hypothesis relative to fluctuations of the background. Larger values indicate greater relative compatibility. p(s = 0) is not calculated in signal regions with a deficit with respect to the nominal background prediction.

Signal channel	Observed events	Total SM background	$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	$S_{\rm obs}^{95}$	$S_{\rm exp}^{95}$	CL _B	p_0	Ζ
C1C1-WW model								
SRLM (disc.)	16	11.6 ± 1.6	0.09	13.0	$8.8^{+4.3}_{-1.5}\\9.0^{+5.4}_{-1.4}$	0.84	0.14	1.09
SRMM (disc.)	9	9.8 ± 2.0	0.06	7.9	$9.0^{+5.4}_{-1.4}$	0.42	0.50	0.00
SRHM (disc.)	12	10.8 ± 2.5	0.07	10.4	$9.4^{+4.1}_{-3.0}$	0.60	0.39	0.29
C1N2-WZ model					210			
SRLM (disc.)	17	18.4 ± 2.9	0.08	11.5	$13.7^{+4.0}_{-4.5}$	0.40	0.50	0.00
SRMM (disc.)	9	5.7 ± 1.3	0.07	10.2	$6.8^{+3.1}_{-0.9}$	0.87	0.13	1.11
SRHM (disc.)	21	13.7 ± 2.3	0.13	17.5	$10.5^{+4.4}_{-2.4}$	0.92	0.06	1.54