Development and Beam Test of the CEPC PFA Calorimeter Prototypes

Yunlong Zhang

State Key Laboratory of Particle Detection and Electronics, China

University of Science and Technology of China

On behalf of CEPC Calorimeter working group

The 8th China LHC Physics Workshop (CLHCP2022), Nov. 23 - 27

Outline

- Motivation
- Calorimeter prototypes introduction
- Beam test at CERN
- > Summary

Motivation

Circular Electron Positron Collider (CEPC)

E_{cm}≈240GeV, luminosity ~2×10³⁴ cm⁻²s⁻¹ can also rum at the Z-pole Precision measurement of the Higgs boson (and the Z boson)

Requirements of CEPC Calorimeter

ILD-like detector with additional considerations.

Challenges:

> Momentum: $\sigma_{1/p} < 5 \times 10^{-5} \text{ GeV}^{-1}$

> Impact parameter: $\sigma_{r\phi} = 5 \oplus 10 / (p \cdot \sin^{\frac{3}{2}}\theta) \mu m$

> Jet energy: $\frac{\sigma_E}{E} \approx 3 - 4\%$

- The Particle Flow Algorithm (PFA) calorimeter concept was proposed
 - High granularity
 - Good track finding
 - Good energy resolution

PFA Calorimeter

Sampling Calorimeter

Calo	Sampling No.	Sensitive detector	Absorb er	Granularit y	Electron ics	Absorb length	Energy Resolution	weight
Sci-W ECAL	32	PSD+SiP M	W-Cu	5mm×5 mm	SP-2E	22 X ₀	16%@ 1 GeV	0.3 T
AHCAL	40	PSD+SiP M	Fe	40mm×4 0mm	SP-2E	4.6 NIL	60%@ 1 GeV	5.0 T

AHCAL

Sci-W ECAL

scintillators

EBU

Sensitive layer

Super-Layers

ECAL structure

Sci-W ECAL

- Sci-W ECAL has been developed two years ago.
 - ◆ 32 sensitive layers, and sensitive area is ~ 22cmx22cm
 - ◆ Each layer has 210 sensitive cells
 - ◆ Cell size is 5 mm x 45 mm

AHCAL

Scintillator

HBU

Sensitive layer

sensitive layer cassette

AHCAL

- The AHCAL was assembled this summer
 - ◆ It has 39 iron absorbers
 - ◆ Absorber: 20 mm iron
 - ◆ 40 sensitive layers, and sensitive area is ~ 72 cm x 72 cm
 - ◆ Each layer has 324 sensitive cells
 - ◆ Cell size is 40 mm x 40 mm

Supporting Table

- ◆The supporting table for calorimeter beam testing
 - ◆ The table can support ECAL and AHCAL at the same time
 - ◆ The horizontal movement distance is ±20 cm, and the up and down movement distance is +15 cm

Supporting table

AHCAL on this table

Beam test

Two weeks of high-energy particle beam test at H8 of SPS

- The H8 beam line is a high-energy, high-resolution secondary beam line.
- > The maximum momentum that can be transported in the experiments is 400 GeV/c protons
- or secondary mixed hadron beams within the range 10-360 GeV/c.
- \triangleright the electron beams with variable purity (10 99 %) are also possible. The maximum Δp/p acceptance of the line is 1.5%.

Transport

- ◆In the middle of Sep. The detectors were sent to CERN from Hefei. The total weight is 10.6 tons.
- ◆On Oct. 14, the detectors arrived at CERN.

Hefei, 15/9

CERN, 14/10

Install the detectors in beam area

Install the detectors in beam area

Beam test

- We tested calorimeter with mu+, pi+, positron
 - Muon+
 - 160 GeV/c, 108 GeV/c
 - Pion+
 - 10 120 GeV/c, one million per point
 - Positron
 - 10 120 GeV/c, 100 thousand per energy point

AHCAL test

- First of all, we tested AHCAL independently
- The internal temperature of AHCAL rose slowly in the first three days of the test and then tended to be stable

AHCAL Test with Mu+

- The energy reference should be taken from MIPs which could be calibrated using high energy muons
- Muon halo mode with 160 GeV/c
- The halo size is about 10 cm x10 cm

Pedestal

Pedestal Position

MIPs

AHCAL Test with pion+

- The energy response of AHCAL was studied by pions
- In the past week, we tested AHCAL independently by pion beams

CEPC AHCAL Prototype CERN SPS H8 Beamline Run87 Plon+@50GeV XY Plane 36 18 0 18 18 18 18 18 2022,10,22 - 20:01:54

50 GeV

CEPC AHCAL Prototype CERN SPS H8 Beamline Run80 Pion+@70GeV XY Plane

2022.10.22 - 17:16:22

YZ Plane

AHCAL Test with pion+

The energy deposition in sensitive cells

AHCAL Test with positron

 In order to study the AHCAL response to EM shower, the positron were used to calibrate AHCAL

Combined Test

Sci-W ECAL Test with Mu+

- The ECAL also tested using muons with 108 GeV/c
- Different locations were scanned during the test

Low – High gain ratio

2022/11/26

Sci-W ECAL Test with Positron

The e+ test, also the beam has hadrons.

Combined Test with pions

- One of the important things is the combined test for hadrons.
 - The event alignment is an important step
 - Preliminary results show that the events collected by ECAL and AHCAL systems are aligned

Summary

- ➤ Both the Sci-W ECAL and AHCAL prototypes were assembled, and tested at CERN last month.
- ➤ The two calorimeters has been taking beam test from Oct. 19 to Nov. 2, the preliminary results show the calorimeters work very well
 - ➤ The Sci-W ECAL and AHCAL were tested with pions and positrons from 10 GeV/c to 120 GeV/c
 - > We collected about 25 million events in this beam test
- We will conduct a detailed analysis of the data to further tap the potential of the data

backup

PFA Calorimeter

AHCAL Test with Mu+

The thresholds were calibrated using muon beam

EventID: 0

moun+ 160GeV

