Search for pair production of gluinos or electroweakinos with two same-sign or three leptons final states at \sqrt{s} =13 TeV with the ATLAS detector

Shiyi Liang(IHEP, CAS)

25 November 2022

CLHCP(2022)

Introduction of SUSY

Standard Model particles	Supersymmetric partners		Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates
			Higgs bosons	0	+1	$H^0_u \ H^0_d \ H^+_u \ H^d$	$h^0 H^0 A^0 H^\pm$
						$\widetilde{u}_L \widetilde{u}_R \widetilde{d}_L \widetilde{d}_R$	(same)
	a c b v photino		squarks	0	-1	$\widetilde{s}_L \widetilde{s}_R \widetilde{c}_L \widetilde{c}_R$	(same)
		Minimal Supersymmetric Model				$\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R$	$\widetilde{t}_1 \widetilde{t}_2 \widetilde{b}_1 \widetilde{b}_2$
	V V Z zino					$\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$	(same)
			sleptons	0	-1	$\widetilde{\mu}_L \widetilde{\mu}_R \widetilde{ u}_\mu$	(same)
(e) μ τ (W)	(ẽ)(μ̃)(τ̃) (Ŵ) wino					$\widetilde{ au}_L \ \widetilde{ au}_R \ \widetilde{ u}_ au$	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ u}_ au$
			neutralinos	1/2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \widetilde{N}_2 \widetilde{N}_3 \widetilde{N}_4$
e quarks	 squarks sleptons & sneutrinos 		charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^\pm \widetilde{C}_2^\pm
force particles	neutralinos x̃ ⁰ & charginos x̃ [±]		gluino	1/2	-1	\widetilde{g}	(same)
			goldstino (gravitino)	$\frac{1/2}{(3/2)}$	-1	\widetilde{G}	(same)

R-parity: $P_R = (-1)^{3(B-L)+2S}$: SUSY particles \rightarrow odd R-parity; SM-particles \rightarrow even R-parity

R-parity conserved:

SUSY particles produced in pairs, Lightest SUSY particle(LSP) stable as a dark matter candidate

R-parity violated:

New terms added in superpotential: λ_{ijk} , λ'_{ijk} , λ''_{ijk} (lepton/quark superfield coupling) R-parity violation implies lepton/baryon number violation

Searches with same-sign/three leptons final state

- Search for pair production of gluinos or electroweakinos with two same-sign or three leptons final states
 - Input: full run2 data of 139 fb⁻¹ from ATLAS detector.
 - Final state: two same-sign or three leptons
 - This final state have low SM backgrounds thus it allows the use of relatively loose kinematic requirements to increase sensitivity to compressed scenarios.
 - Signal model:
 - EWK production: pair production electroweakinos, include RPC and RPV model.
 - Strong production: gluinos pair production with cascade decays via sleptons or W/Z bosons.
 - Status
 - SS/3L EWK: CONF note public[ATLAS-CONF-2022-057]
 - SS/3L strong: ongoing

SS/3L EWK

Higgsino N1N2 RPV

$W_{R} = \lambda_{ijk} \hat{L}_{i} \hat{L}_{j} \hat{E}_{k}^{C} + \lambda_{ijk}^{\prime} \hat{L}_{i} \hat{L}_{j} \hat{E}_{k}^{C} + \lambda_{ijk}^{\prime \prime} \hat{U}_{i}^{C} \hat{D}_{j}^{C} \hat{D}_{k}^{C} + \epsilon_{i} \hat{L}_{i} \hat{L}_{j}$

RPV UDD: λ'_{323} dominant under **minimal flavour violation hypothesis**, and sufficiently strong to have prompt decays.

The main target is the very low LSP mass region, SRs for higher LSP masses are also defined.^p

SRs are orthogonal by N_{b-jets} are statistically combined.

Kinematic distribution in signal regions

Signal region

 $\tilde{\chi}_1^0$

 $ilde{\chi}_2^0$

(f) higgsino N1N2 RPV

 $\lambda_{323}^{\prime\prime}$

 λ_{323}''

Higgsino C1N2/N1N2 Bilinear RPV

$W_{R} = \lambda_{ijk} \hat{L}_{i} \hat{L}_{j} \hat{E}_{k}^{C} + \lambda_{ijk}^{\prime} \hat{L}_{i} \hat{Q}_{j} \hat{D}_{k}^{C} + \lambda_{ijk}^{\prime\prime} \hat{U}_{i}^{C} \hat{D}_{j}^{C} \hat{D}_{k}^{C} + \epsilon_{i} \hat{L}_{i} \hat{L}_{j}$

 Motivation: Sneutrino vacuum expectation values (VEVs) introduce a mixing between neutrinos and neutralinos, leading to see-saw mechanism. The same VEVs are also involved in the decay of the LSP.

The two SRs are orthogonal and are statistical combined.

Signal region

Variables	Two leptons final state	Three leptons final state		
No. (f)	- 2			
$V_{Sig}(t)$	- 2 V	= 5		
isSameSign	res			
leading lepton $p_{\rm T}$	20 GeV	20 GeV		
subleading lepton $p_{\rm T}$	20 GeV	20 GeV		
third lepton $p_{\rm T}$	2	10 GeV		
$E_{\mathrm{T}}^{\mathrm{miss}}$	≥ 100 GeV	≥ 120 GeV		
m _{eff}	-	≥ 350 GeV		
m_{T2}	$\geq 60 \text{ GeV}$	$\geq 80 \text{ GeV}$		
$N_{b-\text{jets}}(p_{\text{T}} > 20 \text{ GeV})$	= 0	-		
$N_{\rm jets}(p_{\rm T} > 25 {\rm ~GeV})$	≥ 1	≥ 1		
$N_{\rm jets}(p_{\rm T} > 40 {\rm ~GeV})$	≥ 4	-		
$M_{ee}/M_{\mu\mu}$ SFOS pairs	-	< 81 or > 101 GeV		

Kinematic distribution in signal regions

Wino C1N2 WZ on-shell

- SR-WZonshell1 is designed for boosted region. Multi-bin fit is applied to SR-WZonshell1.
- SR-WZonshell2 is designed for relatively low mass splitting region.
- Two orthogonal SRs are statistically combined.

Signal reg	gion			
	SR-WZonshell1	SR-WZonshell2		
$N_{Comb}(1)$	=2			
$N_{BL}(l)$	=2	=2 =2 Same-Sign		
$N_{Sig}(l)$	=2			
Charge(1)	Same-S			
$p_T(l)$	≥25 G	ieV		
$N_{jets}(p_T > 25 \text{ GeV})$	≥1			
N _{b-jets}	=0			
m _{jj}	≤350 0	GeV		
$m_{\rm T}2$	≥100 GeV	≤100 GeV		
m_T^{min}	≥100 GeV	≥130 GeV		
$E_{\rm T}^{\rm miss}$	≥100 GeV	≥140 GeV		
m _{eff}	-	≤600 GeV		
$\Delta R(\ell^{\pm},\ell^{\pm})$	$\Delta R(\ell^{\pm},\ell^{\pm})$ -			
	Sig($E_{\rm T}^{\rm miss}$): [0-10],			
	$Spread(\Phi) \ge 2.2$			
Bins	Sig($E_{\rm T}^{\rm miss}$): [10-13]	-		
	$\operatorname{Sig}(E_{\mathrm{T}}^{\mathrm{miss}})$: [13- ∞],			
	$\Delta R(\ell^{\pm}, \ell^{\pm}) \ge 1$			

Kinematic distribution in signal regions

Background Estimation

- Prompt (irreducible) backgrounds
 - Diboson (except WZ+jets), tt+V, multibosn and other: estimated with MC samples
 - WZ+jets: based on MC, with a correction factor obtained from CR fit.
- Detector (reducible) backgrounds
 - Charge flip: data-driven method, cross-check with MC-template method
 - Fake lepton: matrix method, cross-check with MC-template method

Definition of CR and VR

Shiyi Liang

Systematic uncertainties

Relative contributions from experimental and theoretical uncertainties in SRs defined for the UDD RPV model. The individual components can be correlated and therefore do not necessarily add up in quadrature to the total systematic uncertainty.

for the SRs of the WZ and bRPV models

- For CRs and VRs, the total uncertainties are less than 1% to 20% with the largest contribution coming from the modelling of the simulated SM processes.
- For SRs, total uncertainties vary from 30% to 50% with the uncertainties from the estimations of Fakes/Non-Prompt and Charge flip events accounting for the largest contribution in most of the regions.

Expected SM background and data yields in SRs

- The observed data are compatible with the SM prediction
- No significant excess over the expected background is observed.

Model dependent statistical interpretation

Upper limits (black line) on Higgsino RPV model

Exclusion limits on the WZ on-shell model

Upper limits (black line) on bRPV Higgsino model.

- Higgsino-like N1/N2 mass of 200 GeV is excluded for higgsino N1N2 RPV model.
- Higgsino masses smaller than 440 GeV are excluded for higgsino C1N2/N1N2 Bilinear RPV model.
- C1/N2 masses in the range 185-260 GeV are excluded for Wino C1N2 WZ on-shell model for massless bino.

SS/3L strong

25 November 2022

RPC GG 2-step via WZ bosons

For all RPC model, the masses of those mediated SUSY particles were set to be the half betwo

the parent SUSY particles masses and the daughter SUSY particles masses

- According to the mass splitting, both on-shell and off-shell bosons are considered.
- Design three signal regions target compressed region, middle region and boosted region.
- Use multi-bin fit of m_{eff} in RpcGGwz2.

Signal region					Model dependent exclusion limit			
R $N_{lept}^{signal} (N_{lept}^{base}) N_{b-jets}^{20GeV}$	<i>n</i> _{jets} Jet Pt threshold	$E_{\rm T}^{\rm miss}$ $m_{\rm eff}$	$\Delta \phi(\ell 1 \ell 2, E_{\rm T}^{\rm miss})$	$Sig(E_T^{miss})$	$m_{\rm eff}/\sum p_T^{\rm lep}$	$\tilde{\mathbf{g}}$ is production $\tilde{\mathbf{g}} \rightarrow \mathbf{g} \mathbf{g} \mathbf{W} \mathbf{Z}_{2}^{0}$; $\mathbf{m}(\tilde{\mathbf{g}}) = (\mathbf{m}(\tilde{\mathbf{g}}) + \mathbf{m}(\tilde{\mathbf{g}})) = (\mathbf{m}(\tilde{\mathbf{g}}) + \mathbf{m}(\tilde{\mathbf{g}})) = (\mathbf{m}(\tilde{\mathbf{g}}) + \mathbf{m}(\tilde{\mathbf{g}}))$	$\widetilde{\chi}^{0}_{}))/2, m(\widetilde{\chi}^{0}) = (m(\widetilde{\chi}^{\pm}) + m(\widetilde{\chi}^{0}))/2$	
pcGGwz1 >= 2(-) =0 $pcGGwz2 >= 2(-)$ =0 $pcGGwz3 >= 2(>= 3)$ =0	>=6 40 GeV >=6 40 GeV >=6 25 GeV	>150 GeV >2100 GeV >190 GeV >1300 GeV >200 GeV -	>0.8	- - >6	- - >8	2500 ATLAS + RpcGGwz3 V5=13 TeV, 139 fb ⁻¹ + RpcGGwz2 All limits at 95% CL Expected Limit 2000 ATLAS + RpcGGwz2 All limits at 95% CL Expected Limit 2000 ATLAS + RpcGGwz2 2500 ATLAS + RpcGGwz2 2000 ATLAS + RpcGWz2 2000 ATLAS + R	4// →	
$\begin{array}{c} 10^{8} \\ 10^{7} \\ 10^{7} \\ 10^{6} \\ 10^{4} \\ 10^{3} \\ 10^{4} \\ 10^{3} \\ 10^{2} \\ 10 \\ 10^{-1} \\ 10^{-2} \\ 0 \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10 \\ 10^{-2} \\ 10^{$	Total SM ttW ttZ Wultitop OtherMultib WZ_bkg ttbar iyets mg. mge - (1800,700) GeV - (1900,900) G	• Multi are a bin fi sens So w in the	-bin fit in o Iso tried. t showed etivity imp e not use e.	other S But mu little si provem multi-	SRs ulti- ignal nent. bin fit	RpcGW21 1500 150	2000 2200 2200 m(g) [GeV] bbtained for VZ model	
m _{eff} distribution in RpcGGwz2					\bullet Expected to exclude gluino masses up to 1900 GeV.			

RPC GG 2-step via sleptons

- Design three signal regions target compressed region, middle region and boosted region.
- Use multi-bin fit in each signal region.
- For signal region optimization, BDT is also tried. But BDT show little improvement in signal

sensetivity comparing to cut-and-count. So we not use BDT results in following analysis.

Shiyi Liang

Summary

- A search for direct production of winos and higgsinos in two same-sign or three leptons final state is conducted. No significant excess over the Standard Model expectation is observed.
 - For Wino C1N2 WZ on-shell model, wino masses up to 260 GeV are excluded, respectively, for a bino of vanishing mass.
 - For higgsino C1N2/N1N2 Bilinear RPV model, higgsino masses smaller than 440 GeV are excluded.
- A search for pair production gluinos decaying in RPC signal model in two same-sign or three leptons final state is ongoing. We have got improvement in exclusion limit comparing to results in previous SS/3L strong search.

