Search for resonances produced in association with or decaying to a Z boson at large transverse moment in pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector

Xiaowen Su^{1,2}

CLHCP2022, November 29, 2022

¹USTC, ²IJCLab

Outline

- · Introduction
- · Analysis Strategy
- · Event Selection
- · Background modelling and BumpHunter
- · Results
- $\cdot \ \text{Summary}$

Introduction

The Standard Model (SM)

- A successful theory of fundamental particles and interactions
- Tested by many experiments like the LHC
- · SM is not perfect:
 - · Unification of the interactions?
 - · Extra dimensions?

٠..

ATL-PHYS-PUB-2022-009

Physics beyond the Standard Model (BSM) Searches

- · Most of searches are optimized for a specific BSM model
- No new physics has been found so far by model-specific searches
- Signals might be hidden in kinematic regimes and final states that have remained unexplored
 - ⇒ Motivate model-independent searches!

Introduction

What is the general search

- It is generic: performed with multiple final states
- It is model-independent: minimal features of BSM physics are assumed

An example of general searches

- · Classify events according to the combinations of high p_T reconstructed objects (e, μ , γ , (b-)jets, E_T^{miss}) in the event
- · Calculate the deviation between data and SM expectations in 686 classes

3

Introduction

- A general search for new resonances in events with high p_T (> 100GeV) Z (66 < m_Z < 116GeV) [arXiv:2209.15345]
- Data: $139fb^{-1}$ collected by ATLAS in Run 2
- Signal process: $pp \rightarrow Z(ee/\mu\mu) + X$, X: all possible final states
- Resonance can be induced by X or Y, use m_X and m_{ZX} as observables
- \cdot Search for local excesses on m_X and m_{ZX} spectra in each category

4

Analysis Strategy

Analysis strategy

- Define 6 exclusive event categories by the leading p_T object in X: Lead small-R jet, Lead b-jet, Lead large-R jet, Lead photon, Lead electron, and lead muon.
- · Additionally, one inclusive category is defined
- · Search for the local excesses on m_X and m_{ZX} spectra in each category using BumpHunter

Signal region

· OS 2 ℓ , $66 < m_{\ell\ell} < 116 {
m GeV}$, $p_T^{\ell\ell} > 100 {
m GeV}$

Event yields

 Lead small-R jet, Lead b-jet, and Lead large-R jet dominate the event yields of data:

Category	LeadJ	LeadB	LeadFatJ	LeadP	LeadE	LeadM
e^+e^-	979 074	77 625	181 561	2601	565	530
$\mu^+\mu^-$	1 307 187	99 927	228 986	3 418	790	766

Merged-ee identification

- When $Z(\it{ee})$ boson is highly boosted, we can not reconstruct the Z boson using 2 good electrons
- We will try to reconstruct the Z boson from small-R jet with $p_T > 450 {\rm GeV}$ instead when we fail to reconstruct it with 2 leptons (NO overlap)
- The merged-*ee* identification is based on BDT using jet properties as input variables
- · Signal events: Z(ee) + jets, Background events: other SM background MC samples
- \cdot It increases the event yields in the high Z p_T region by several times

Background modelling and BumpHunter

- The SM background is modelled by a fit to the binned m_X or m_{ZX} spectra with smooth functions in each categories
- BumpHunter(BH) algorithm is applied to the mass spectrum to search local excesses
- Using background derived by the background-only fit excluding the BH interval increases the significance
- · Pseudo-experiments (PE) are generated to obtain a mass range to detect a signal
- \cdot Sensitive search range: the region with PE fraction above 50% (BH p-value< 0.01)

BumpHunter search results

- The largest excess is at around 1.6TeV in the m_{ZX} spectrum of the leading large-R jet category with a BH p-value of 0.48 and 0.1 before and after excluding the initial BH interval, respectively
- No significant excesses are observed in any of the mass spectra

Results

- Exclusion upper limits are derived at 95% CL for:
 - Model-independent interpretation: Gaussian-shaped signals with relative width values of 3%, 5% and 10%
 - Model-dependent interpretation: HVT signal ($W' \rightarrow ZW \rightarrow llqq$)

Summary

- Model-independent general searches for BSM can help to explore the phase-space regions that remained uninvestigated
- The aim of the general search is not discovery, but probe a large number of phase spaces simultaneously and help to identify the sensitive phase-space regions for the future dedicated searches
- We perform a novel generic search for resonances associated with or decaying to high $p_T Z$ boson using ATLAS full Run-2 data [arXiv:2209.15345]
- No significant excesses have been found in $Y \rightarrow Z + X$ general search
- More general search results are coming from Run 2 and Run 3 data!

Backup

Background modelling

• The SM background is modelled by a fit to the binned m_X or m_{ZX} spectra with 2 smooth functions in each categories:

$$f_1(x) = p_0 \left(e^{-p_1 x} + p_2 e^{-(p_1 + p_3)x} + p_4 e^{-(p_1 + p_3 + p_5)x} + \cdots \right)$$
 (1)

where $x = (\mathcal{M} - \mathcal{M}_{\min})/(\mathcal{M}_{\max} - \mathcal{M}_{\min})$ in Eq. (1), \mathcal{M}_{\min} and \mathcal{M}_{\max} are the lower and upper fit boundaries of the distribution

$$f_2(x) = p_0(1-x)^{p_1} x^{p_2+p_3 \ln x + p_4 \ln^2 x + \cdots}$$
 (2)

 $x = \mathcal{M}/\sqrt{s}$ in Eq. (2)

 \cdot p_0 is a free normalisation factor and p_i are a number of other free parameters controlling the shape of a mass distribution

11