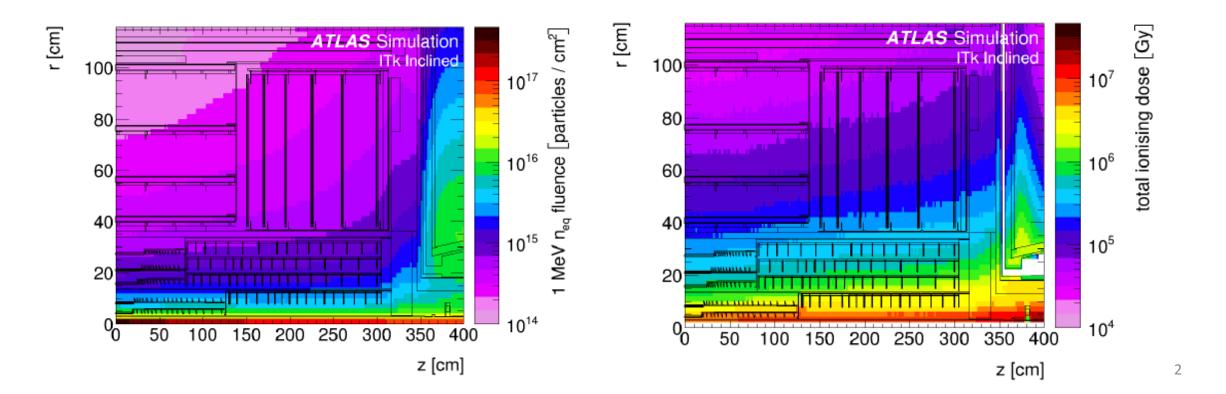




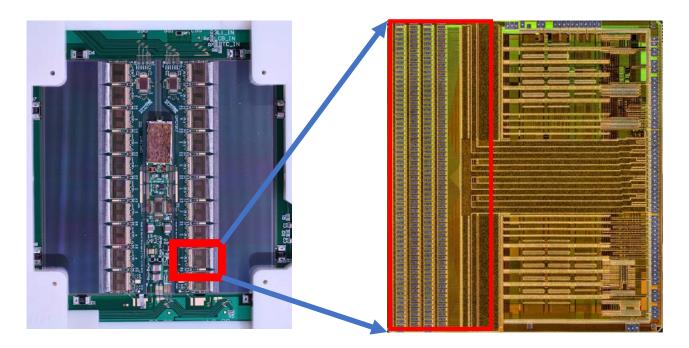


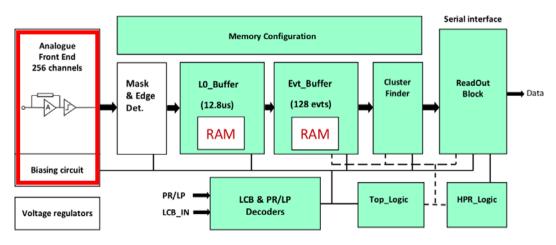
# SEE test for ABCStar VO at CSNS for ITk Strip Upgrade

Weiguo Lu Mingming Xia (IHEP/ THU) For China ATLAS ITk team CLHCP 2022,Nanjing,11-26/2022

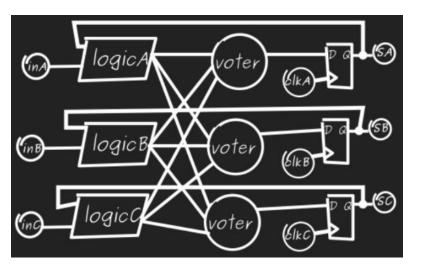

#### Outline

- ABCStar chips and radiation effect
- Data taking at CSNS
- Analysis results
- Summary


#### Radiation environment in ITk


• The fluence and dose distributions for the ITk layout

• NIEL:  $1.2 \times 10^{15} n_{eq}/cm^2$  TID:50 MRad




#### **ABCStar chips**



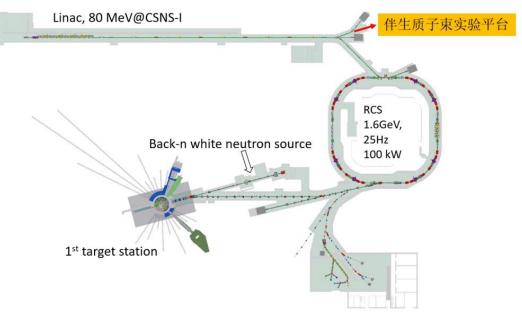


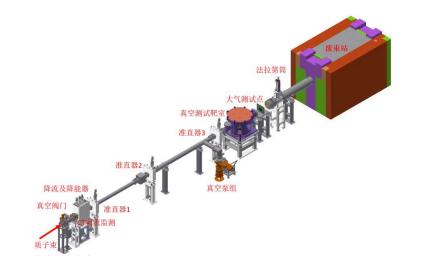
- front end readout ASIC for ATLAS ITk detector
- Key component of the ITk strip module, ~230,000 needed for production
- Process of signals from 256 silicon strips channel
- Two versions of design
  - V0
  - V1 (TMR protection)



**TMR** 

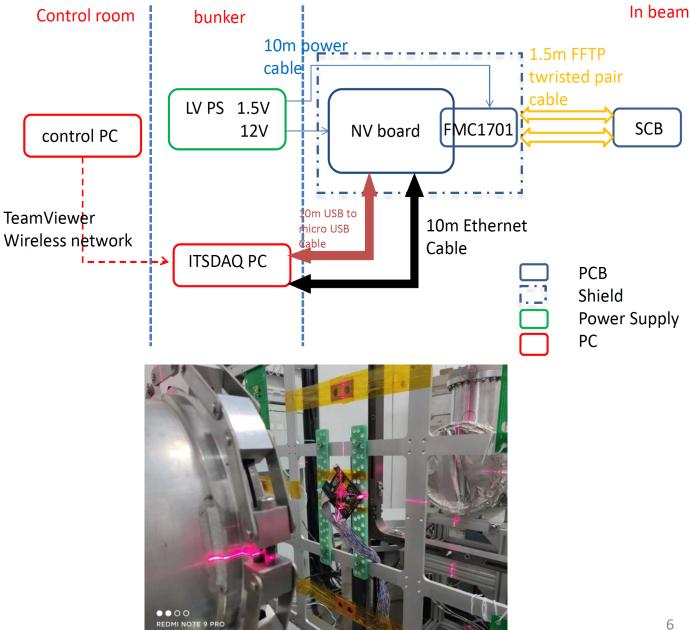
3


# Radiation effect in electronics


- Cumulative radiation effects
  - TID effects
  - Displacement damage
- Single-Event effects
  - Single event upsets
    - change of state in memory due to an electrical disturbance from radiation
  - result in wrong data and misconfiguration

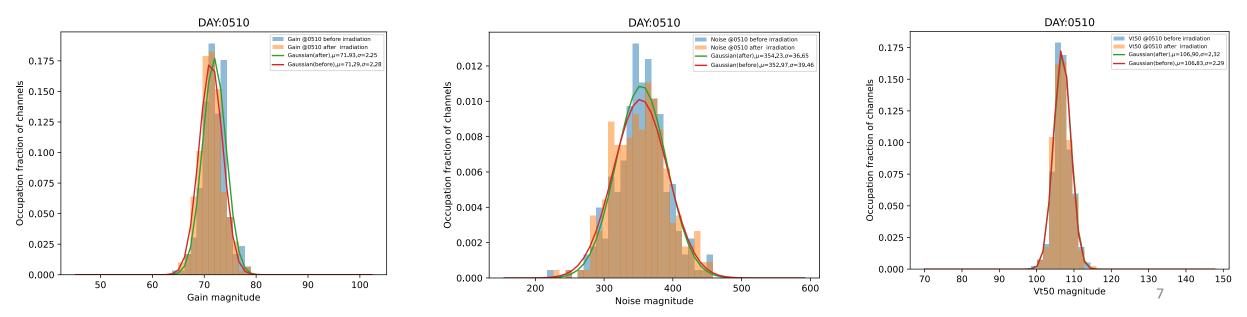
| Category                             | Туре                                        | comment                                                                                                                                                                                |
|--------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-<br>destructive<br>(soft errors) | SEU(Single -Event Upsets)                   | <ul> <li>Static upsets in storage cell such as SRAM, latches and<br/>flip-flops</li> <li>High Error rate can cause system degradation</li> <li>Correctable by reprogramming</li> </ul> |
|                                      | SET(Single-Event<br>Transients)             | Transient voltage perturbation for combinational logic                                                                                                                                 |
|                                      | SEFI(Single-Event<br>Functional Interrupts) |                                                                                                                                                                                        |
| Destructive<br>(hard errors)         | SEL(Single-Event Latchup)                   | Recover from power cycle if current limiting functions embedded in design                                                                                                              |
|                                      | SEB(Single-Event Burnout)                   | Catastrophic failure in high voltage device                                                                                                                                            |
|                                      | SEGR(Single-Event Gate<br>Rupture)          | Permanent damage                                                                                                                                                                       |

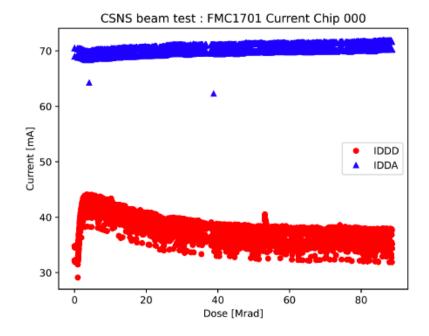
# APEP at CSNS


- CSNS: China Spallation Neutron Source
- APEP: Associated Proton Experiment Platform
- Beam parameter
  - Energy: 10-80MeV, FWHM < 8.65%@>30MeV
  - Size: 10mm\*10mm-50mm\*50mm, continuous tuned square window
  - Flux:10<sup>5</sup>-10<sup>10</sup> p/cm<sup>2</sup>/s
  - Height: 1.2m
  - Beam time: ~5000hrs/year
- TRIUMF team have performed the SEE exp already.






# Data taking


- Data taking
  - Taking procedure using scripts
    - Fixed pattern mode
    - ~1hr time block, 20 cycles
  - 3 time slots
    - ~37.5 hours
      - May-10, May-11
    - ~12 hours
      - May-13
    - ~14 hours
      - May-14

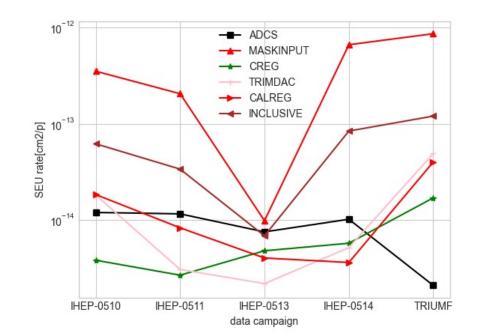


# Results- current and performance

- Current measurements
  - IDDA and IDDD vs total dose
  - Total dose up to 88 Mrad
  - Peak of TID bump at ~2Mrad
- Analog performance
  - No obvious difference observed before and after irradiation






## Results- Physics packets

- $\sigma_{SEU} = \frac{n_{0 \to 1} + n_{1 \to 0}}{\int d\phi}$ 
  - $\int d\phi$ : total fluence
  - $n_{0 \rightarrow 1}/n_{1 \rightarrow 0}$ : bit flips
- the difference of two causes:
  - the number of SEM counts
  - the distance of the SCBs from the beampipe

| Chip Type | Institute | Fill-type | $n_{0 \rightarrow 1}$ | $n_{1 \rightarrow 0}$ | N-bits   | $\int d\phi [p/cm^2]$ | $\sigma_{SEU}[cm^2/p]$           |
|-----------|-----------|-----------|-----------------------|-----------------------|----------|-----------------------|----------------------------------|
| V0        | IHEP      | Fixed     | 1832293               | 119324                | 52153344 | $3.1 \times 10^{17}$  | $(6.3 \pm 0.08) \times 10^{-12}$ |
| V0        | TRIUMF    | Fixed     | 33699                 | 34546                 | 15250176 | $1.86 \times 10^{16}$ | $(3.7 \pm 0.03) \times 10^{-12}$ |
| V1        | TRIUMF    | Fixed     | 16343                 | 16506                 | 7462368  | $4.47 \times 10^{15}$ | $(7.4 \pm 0.08) \times 10^{-12}$ |

## Results- Register packets

- Mismatch of cross-section
- The potential causes:
  - Beam energy
    - 80MeV at CSNS
    - 480 MeV at TRIUMF
  - Fluence uncertainty
    - angle of incidence of beam Register Type through chips
  - Synergistic Effects
    - Total ionizing dose on SEL



| beam | Register Type | Fill-type | Chip<br>Type | Institute       | $n_{1 \rightarrow 0}$ | $n_{0 \rightarrow 1}$ | N-bits               | $\int d\phi [p/cm^2]$                     | $\sigma_{SEU}[cm^2/p]$                      |
|------|---------------|-----------|--------------|-----------------|-----------------------|-----------------------|----------------------|-------------------------------------------|---------------------------------------------|
| SEU  | ADCS          | Fixed     | VO           | TRIUMF/<br>IHEP | 1/19                  | 0/10                  | 301792/<br>1684608   | $2.5 \times 10^{14}/2.7 \times 10^{15}$   | $2.1 \times 10^{-15} / 1.1 \times 10^{-14}$ |
|      | MASKINPUT     |           |              |                 | 281/336               | 1/768                 | 402400/<br>2246048   | $3.3 \times 10^{14} / 3.7 \times 10^{15}$ | $8.6 \times 10^{-13}/3.0 \times 10^{-13}$   |
|      | CERG          |           |              |                 | 1/2                   | 4/8                   | 352096/<br>1964736   | $2.9 \times 10^{14} / 3.2 \times 10^{15}$ | $1.7 \times 10^{-14} / 3.1 \times 10^{-15}$ |
|      | TRIMDAC       |           |              |                 | 82/131                | 1/1                   | 2010592/<br>11226080 | $1.7 \times 10^{15} / 1.8 \times 10^{16}$ | $4.9 \times 10^{-14} / 7.0 \times 10^{-15}$ |
|      | CALREG        |           |              |                 | 13/31                 | 1/0                   | 401856/<br>2245056   | $3.5 \times 10^{14} / 3.8 \times 10^{15}$ | $4.0 \times 10^{-14} / 8.1 \times 10^{-15}$ |
|      | INCLUSIVE     |           |              |                 | 378/688               | 16/804                | 3518912/<br>19647296 | $3.2 \times 10^{15}/3.2 \times 10^{16}$   | $1.2 \times 10^{-13}/4.6 \times 10^{-14}$   |

#### Results– HPR reset and unlock rates

- High Priority Register packets
  - contain link status information
  - be sent at regular intervals
    - integer multiples of 40,000 BCs(1 ms)
    - Out-of-time packets used to detect the **resets** in ASIC
  - LCB\_Locked bit(bit 29) in HPR packet to
    - identify the **unlocked** HPR packets

| Chip Type | Institute | Fill-type | Unlocked rate(upper limit) | Out of time packets rate |
|-----------|-----------|-----------|----------------------------|--------------------------|
| V0        | IHEP      | Fixed     | $9 \times 10^{-5}$         | $5 \times 10^{-3}$       |
|           | TRIUMF    | Fixed     | $1.65 \times 10^{-5}$      | $9 \times 10^{-5}$       |

#### Results- Register status bits

- The status bit for register read packets are checked
  - IHEP: 0.0005% for LP/PR FIFO
  - TRIUMF: 0.0007% for LP/PR FIFO
- Non zero Register and cluster FIFO indicate ASIC resets in IHEP experiments, which is consistent with the large out-of-time HPR packet rate.

| Chip<br>Type | Institute | Fill-type | PR_FIFO_almost_full | LP_FIFO_almost_full | RegFIFO | CLusterFIFO | Npackets |
|--------------|-----------|-----------|---------------------|---------------------|---------|-------------|----------|
| VO           | IHEP      | Fixed     | 148                 | 147                 | 277     | 288         | 28880406 |
| V0           | TRIUMF    |           | 159                 | 228                 | 0       | 0           | 22916647 |

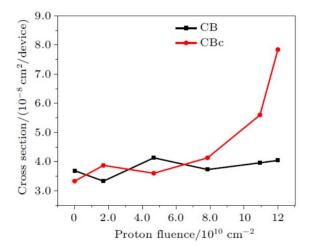
#### Results- Estimated impact on operation

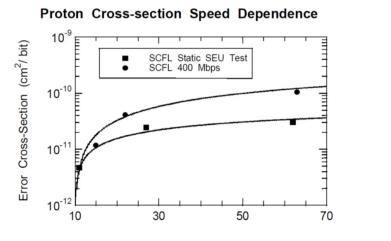
- Typical HL-LHC parameters
  - pileup 200
  - BC rates 40MHz
  - $Rate_{SEU} = O(10^{-10})$  errors/event/ABCStar

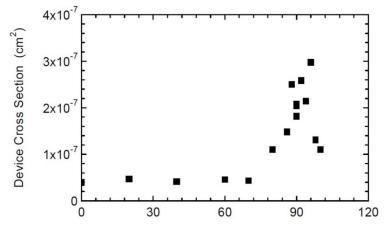
- Error rate due to thermal noise occupancy:  $10^{-2}$  errors/event/ABCStar
- During the normal operation, the hit errors in physics packet clusters is  $20 s^{-1}$ , so there is **no practical concern**.

#### Summary

- SEE test is critical for ABCStar under ITk strip environment
  - Successful data collection at CSNS APEP provides a new platform for SEE test with medium energy proton
  - More than 60 effective hrs data taking based on ABCStar V0 SEE test setup
- Data analysis has been done
  - The result is mostly consistent with that obtained from TRIUMF experiments.
  - Still need further test to check the specific causes.
- Perform SEE test for ITk Strip ASICs ABCStar V1 and other chips
  - check the TMR protection.


#### Backup


• 
$$\Phi_{hadrons} = O(10^7) hadrons/cm^2/s$$


• expected fluences  $O(10^{-3})$  hadrons/cm<sup>2</sup>/pp

• 
$$Rate_{SEU} = \left( \Phi_{hadrons} \times \frac{time \text{ in pipeline}}{packet} \right) \times \frac{packets}{event} \times \sigma_{SEU}$$
  
=  $O(10^7) \times O(10^{-5}) \times O(10^{-12})$   
=  $O(10^{-10})$  errors/event/ABCStar

#### Effect of Total Ionizing Dose on SEUs for 0.25 μm SRAM - change in SEU cross-section







Proton Energy (MeV)

Angle of Incidence (degrees)