

中國科学院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

Search for single T production in $T \rightarrow tZ(vv)$ decay mode

Taozhe Yu(Institution of High Energy Physics) on behalf of the CMS Collaboration

> 2022 CLHCP 23-27 November 2022, Nanjing(China)

Introduction

Standard Model

Fermions: quarks, leptons

Mass: Yukawa coupling to the Higgs

Hierarchy problem

little Higgs, composite Higgs models

Fermions: Vector-like quarks

non-Yukawa coupling terms

Don't excluded by precision SM measurements

CMS Integrated Luminosity, pp, $\sqrt{s}=$ 13 TeV

- VLQs: hypothetical new spin -1/2 charge 2/3 particle
- VLQs offer a potential solution to the hierarchy problem of standard model
- Using all the Run2 data to search for VLQs

Single production of VLQs have larger phase space above 1TeV

- Three different decay channels into SM particles by the assumption of the model: bW, tH, tZ
- We will search for single produced VLQ T' decaying in top quark + Z boson in dineutrino channel

Analysis strategy

Forward jets: define two categories with enhanced sensitivity

- ✓No forward jets
- ✓At least 1 forward jet
- The top quark identified in three different scenarios:

- Neutrinos are not detected in the experimental apparatus.
- T quark four-momentum cannot be reconstruction

g man

In order to improve the sensitivity of the analysis, the following selection is applied:

6

• The signal selection efficiency for different categories list here:

Background Estimation

- Main Background: Z+jets, W+jets, ttbar
- Using Data-driven method to get correction factors from control region in data
- Control regions for the main backgrounds are defined as:

➢Resolved category

Variable	SR	Z+jets CR	W+jets CR	ttbar CR
lepton	veto	veto	>=1	>=1
Number of midum b jet	>=1	=0	=0	>=1

Partially merged category

Variable	SR	ttbar CR
minΦ(MET,jet)	> 0.6	< 0.6

Fully merged category

Variable	SR	W/Z+jets CR	ttbar CR
Leotpn	veto	veto	1 loose muon or electron
minΦ(MET,jet)	> 0.6	> 0.6	No cut
Top jet	1 b-subjet	0 b-subjet	1 b-subjet

M_T [GeV]

Background estimation test

Comparison of data and the predicted background(resolved)

Background estimation test

Systematics

Source	Effect(%)	Туре
Luminosity	1.8	rate
Pileup	0.2-3	rate
b-tagging	0.5-1.2	rate
Top tagging	9-10	rate, shape
W tagging	7-8	rate, shape
Trigger efficiency	1-3	rate, shape
Prefiring	0.2-3	rate, shape
JES	2-18	rate, shape
JER	2-5	rate, shape
PDF	1-5	rate
μ_F 和 μ_R	8-13	rate, shape
Background scale factors	5-30	rate, shape

The dominant systematics are: top tagging, W tagging, μ_R , μ_F , background SF ¹⁰

Results-Resolved topology

· All background processes are derived from the fit to data

Results – Partially merged topology

12

FWD0

FWD1

Results – Fully merged topology

Results-limit

95% confidence level(CL) exclusion limits on the production cross section of T' times BR

- Narrow width resonance: Cross section : greater than 602–15 fb. Masses: below 0.98TeV
- 10-30% width resonance : Cross section : greater than 836–16 fb Masses: below 1.4TeV
- 2D limit: The hashed red line indicates the boundary of the excluded region

Summary

 Study of single production of VLQ in tZ (top hadronic, Z to neutrinos) has been shown all Run2 data

	Cross section@95%CL	Mass@95%CL
Narrow width resonance	>602-15fb	<0.98TeV(5%)
10-30% width resonance	>836–16 fb	<1.4TeV(30%)

- This is first result of MET + jets final state in CMS
- This is the current best published result on single-VLQ T' in the tZ(vv) decay channel.
- This result has been published in <u>JHEP</u>

中國科學院為能物記為完備 Institute of High Energy Physics Chinese Academy of Sciences

backup

Scale factor

• To make things brief

$$a1 = N_{Znunu}^{CS1} \qquad b1 = N_{WJet}^{CS1} \qquad c1 = N_{ttbar}^{CS1} \qquad d1 = N_{otherBKG}^{CS1} - N_{data}^{CS1}$$

$$a2 = N_{Znunu}^{CS2} \qquad b2 = N_{WJet}^{CS2} \qquad c2 = N_{ttbar}^{CS2} \qquad d2 = N_{otherBKG}^{CS2} - N_{data}^{CS2}$$

$$a3 = N_{Znunu}^{CS3} \qquad b3 = N_{WJet}^{CS3} \qquad c3 = N_{ttbar}^{CS3} \qquad d3 = N_{otherBKG}^{CS3} - N_{data}^{CS3}$$

$$SF1 = -\frac{b3 * c2 * d1 - b2 * c3 * d1 - b3 * c1 * d2 + b1 * c3 * d2 + b2 * c1 * d3 - b1 * c2 * d3}{a3 * b2 * c1 - a2 * b3 * c1 - a3 * b1 * c2 + a1 * b3 * c2 + a2 * b1 * c3 - a1 * b2 * c3}$$

$$SF2 = -\frac{-a3 * c2 * d1 + a2 * c3 * d1 + a3 * c1 * d2 - a1 * c3 * d2 - a2 * c1 * d3 + a1 * c2 * d3}{a3 * b2 * c1 - a2 * b3 * c1 - a3 * b1 * c2 + a1 * b3 * c2 + a2 * b1 * c3 - a1 * b2 * c3}$$

$$SF3 = -\frac{a3 * b2 * d1 - a2 * b3 * d1 - a3 * b1 * d2 + a1 * b3 * d2 + a2 * b1 * d3 - a1 * b2 * d3}{a3 * b2 * c1 - a2 * b3 * c1 - a3 * b1 * d2 + a1 * b3 * d2 + a2 * b1 * d3 - a1 * b2 * d3}$$

- We use this three formula to calculate the SFs bin by bin in 2D bins of HT and MET pt.
- If you use the error propagation formula, you can calculate the error of SFs in each bin(the formula is <u>here</u>)

Scale factor

-2.5

-2.5

2.

scale factor(in 2D bins of HT and MET pt) SF3 SF1 SF2 [∧=0 [5] [1400 [1400] [1400] [1400] 5¹⁶⁰⁰ [^1600 [^95] 1400 W –1400 ₩ -2.5 -2.5 1.5 1.5 0.93 HT [GeV] HT [GeV] HT [GeV] SF1 SF2 SF3 [790] MET [060] MET [000] [∑=00 95] 1400 ₩ [1600 [GeV] 1400 MET -2.5 -2.5 .5 1.37 HT [GeV] HT [GeV] HT [GeV] SF1 SF2 SF3 [1600 [095] 1400 W ∑¹⁶⁰⁰ ووح ا L1400 -2.5 -2.5 -2 1.5 1.5 2 4 5 1.27 HT [GeV] HT [GeV] HT [GeV] ttbar ZToNuNu Tol Nu

QCD rejection: minDPhi

Min-dphi:

- Minimum angle between MET and AK4 jets
- \rightarrow Useful to discriminate against QCD
- \rightarrow Can help defining control/signal regions

Cut at min $\Delta \phi_{MET,jets}$ > 0.6

Reduces QCD, enriches with ZJets + vv;
 [signal you see at low mindphi are semi-leptonic top decays]

