

Search for Higgs boson pair production in bbb final state in association with a vector boson with the CMS detector

HIG-22-006

John Alison², Chayanit Asawatangtrakuldee¹, Agni Bethani³, Yihui Lai³, Chuyuan Liu², Chris Palmer³, Xiaohu Sun⁴, Long Wang³, <u>Licheng Zhang</u>⁴

- 1. Chulalongkorn University
- 2. Carnegie-Mellon University
- 3. University of Maryland
- 4. Peking University

23rd-27th Nov. 2022 CLHCP, NanJing

On behalf of PKU CMS group and VHH4b analysis team

Introduction

HH: direct investigation of EWSB and scalar sector properties

We are studying HH production mode associated with one vector boson (VHH)

• Focus on HH decay to 4b final states and leptonic decay and hadronic decay for V-bosons.

Complementary to ggF and VBF analyses.

onViv.1401 F0 40V0	$\sqrt{s} =$	= 8 TeV	$\sqrt{s} =$	= 13 TeV	$\sqrt{s} =$: 14 TeV
arXiv:1401.7340v2	(LO) NLO	(LO) NLO	(LO) NLO
HH (EFT loop-improv.)	$(5.44^{+38\%}_{-26\%})$	$8.73^{+17+2.9\%}_{-16-3.7\%}$	$(19.1^{+33\%}_{-23\%})$	$29.3^{+15+2.1\%}_{-14-2.5\%}$	$(22.8^{+32\%}_{-23\%})$	$34.8^{+15+2.0\%}_{-14-2.5\%}$
HHjj (VBF)	$(0.436^{+12\%}_{-10\%})$	$0.479^{+1.8+2.8\%}_{-1.8-2.0\%}$	$(1.543^{+9.4\%}_{-8.0\%})$	$1.684^{+1.4+2.6\%}_{-0.9-1.9\%}$	$(1.839^{+8.9\%}_{-7.7\%})$	$2.017^{+1.3+2.5\%}_{-1.0-1.9\%}$
$t ar{t} H H$	$(0.265^{+41\%}_{-27\%})$	$0.177^{+4.7+3.2\%}_{-19-3.3\%}$	$(1.027^{+37\%}_{-25\%})$	$0.792^{+2.8+2.4\%}_{-10-2.9\%}$	$(1.245^{+36\%}_{-25\%})$	$0.981^{+2.3+2.3\%}_{-9.0-2.8\%}$
W^+HH	$(0.111^{+4.0\%}_{-3.9\%})$	$0.145^{+2.1+2.5\%}_{-1.9-1.9\%}$	$(0.252^{+1.4\%}_{-1.7\%})$	$0.326^{+1.7+2.1\%}_{-1.2-1.6\%}$	$(0.283^{+1.1\%}_{-1.3\%})$	$0.364^{+1.7+2.1\%}_{-1.1-1.6\%}$
W^-HH	$(0.051^{+4.2\%}_{-4.0\%})$	$0.069^{+2.1+2.6\%}_{-1.9-2.2\%}$	$(0.133^{+1.5\%}_{-1.7\%})$	$0.176^{+1.6+2.2\%}_{-1.2-2.0\%}$	$(0.152^{+1.1\%}_{-1.4\%})$	$0.201^{+1.7+2.2\%}_{-1.1-1.8\%}$
ZHH	$(0.098^{+4.2\%}_{-4.0\%})$	$0.130^{+2.1+2.2\%}_{-1.9-1.9\%}$	$(0.240^{+1.4\%}_{-1.7\%})$	$0.315^{+1.7+2.0\%}_{-1.1-1.6\%}$	$(0.273_{-1.3\%}^{+1.1\%})$	$0.356^{+1.7+1.9\%}_{-1.2-1.5\%}$
$tjHH(\cdot 10^{-3})$	$(5.057^{+2.0\%}_{-3.2\%})$	$5.606^{+4.4+3.9\%}_{-2.3-4.2\%}$	$(23.20^{+0.0\%}_{-0.8\%})$	$29.77^{+4.8+2.8\%}_{-2.8-3.2\%}$	$(28.79^{+0.0\%}_{-1.2\%})$	$37.27^{+4.7+2.6\%}_{-2.7-3.0\%}$

Introduction

• Cross sections are enhanced by the constructive interference.

• Contribution on sensitivities over K_{λ} at positive side is expected.

- VHH channel has the unique feature to decompose ZZHH/WWHH(Kzz/Kww) vertices according to the V-leptonic decay.
- Four orthogonal search channels depending on lepton multiplicity: MET, SL, DL, FH.*

^{*} MET, Single-Lepton, Double-Lepton, Full-Hadronic

Documentation

★ CADI: HIG-22-006

- * CMS Pub Talk
- ★ Pre-Approval Talk

★ Analysis Twiki

- **★** Main Page
- Review Twiki Page comments from Hbb, HH and HIG have been addressed

★ ARC:

- **★** James David Olsen (PRINCETON)
- **★** Giacomo Ortona (TORINO)
- **★** Michele Selvaggi (CERN)
- **★ Toni Sculac (SPLIT-UNIV)**

Simulated VHH -> µµbbbb event

CMS AN-2021/205

Available on the CMS information server

CMS AN-21-205

CMS Draft Analysis Note

The content of this note is intended for CMS internal use and distribution only

2022/05/19 Archive Hash: fc9fb45 Archive Date: 2021/01/27

Searches for the double Higgs production associated with a vector boson in pp collisions at $\sqrt{s} = 13 \text{ TeV}$

John Alison³, Chayanit Asawatangtrakuldee¹, Patrick Bryant³,
Yihui Lai², Chuyuan Liu³, Chris Palmer²,
Xiaohu Sun⁴, Long Wang², Licheng Zhang⁴

1 Chulalongkorn University (TH)
2 University of Maryland (US)
3 Carnegie-Mellon University (US)
4 Peking University (CN)

Paper Draft

CMS PAPER HIG-22-006

DRAFT CMS Paper

The content of this note is intended for CMS internal use and distribution only

2022/08/22 Archive Hash: de4dd9e Archive Date: 2021/03/21

Searches for HH with vector boson associated production in proton-proton collisions at $\sqrt{s}=13\,\text{TeV}$

The CMS Collaboration

Samples and Datasets

★ Data

- **★ SL/DL channel: SingleMuon/SingleElectron/DoubleMuon/DoubleElectron(2016/2017)**
- **★ SL/DL channel: SingleMuon/DoubleMuon/EGamma(2018)**
- **★ MET channel: MET**
- **★ FH channel: BTagCSV(2016/2017), JetHT(2018)**
- * Run: 2016(B,C,D,E,F,G,H); 2017(B,C,D,E,F); 2018(A,B,C,D);

Table 1: Golden JSON files used in the analysis and the corresponding integrated luminosities.

Year	File name	\mathcal{L} (fb ⁻¹)
2016	Cert_271036-284044_13TeV_Legacy2016_Collisions16_JSON.txt	$36.3 \mathrm{fb}^{-1}$
2017	Cert_294927-306462_13TeV_UL2017_Collisions17_GoldenJSON.txt	$41.5{\rm fb}^{-1}$
2018	Cert_314472-325175_13TeV_Legacy2018_Collisions18_JSON.txt	$59.8 \mathrm{fb}^{-1}$

★ MC simulation

- **★** All the MC samples updated to UL
- ★ 8 VHH(ZHH/WHH) signal samples at LO (for <u>VHH modeling</u>)
- ★ DY+Jets, ttbar, ttbb, ttH, ttV, single-Top, Z(vv)+Jets samples at LO (for background modeling)

Background MC Processes

MC Corrections Applied

- Jet energy smearing according to JME prescriptions.
- B-tag efficiencies scale factors (WP scale factors) according to BTV prescriptions.
 (DeepJets and ParticleNets)
- Trigger efficiency scale factors as measured by VHH group analyzers.
- PileUP re-weighting.
- *All corrections have the corresponding uncertainty associated.
- **★**Other corrections will be introduced in specific channels.

VHH Analysis HLT Path

All 3 years triggers have been studied

Lepton	HLT Path
Trigger for Muon	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8 (2018)
	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8 OR
	HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_DZ_Mass8 (2017)
	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL OR
	HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL OR
	HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ OR
	HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_DZ (2016)
Trigger for Electron	HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL (2018)
	HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL (2017)
	HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ (2016)

SL

DL

Trigger	HLT_Ele27_WPTight_Gsf or HLT_IsoMu24 or HLT_IsoTkMu24 (2016)
	HLT_Ele32_WPTight_Gsf or HLT_IsoMu27 (2017)
	HLT_Ele32_WPTight_Gsf or HLT_IsoMu24 (2018)

MET

Trigger	HLT_PFMET120_PFMHT120_IDTight (2018)	
	HLT_PFMET120_PFMHT120_IDTight OR	
	HLT_PFMET120_PFMHT120_IDTight_PFHT60 (2017)	
	HLT_PFMET110_PFMHT110_IDTight OR	
	HLT_PFMET120_PFMHT120_IDTight OR	
	HLT_PFMET170_NoiseCleaned OR HLT_PFMET170_BeamHaloCleaned	OR
	HLT_PFMET170_HBHECleaned (2016)	

FH

2016	HLT_QuadJet45_TripleBTagCSV_p087
	HLT_DoubleJet90_Double30_TripleBTagCSV_p087
	HLT_DoubleJetsC100_DoubleBTagCSV_p014_DoublePFJetsC100MaxDeta1p6
2017	HLT_PFHT300PT30_QuadPFJet_75_60_45_40_TriplePFBTagCSV_3p0
	HLT_DoublePFJets100MaxDeta1p6_DoubleCaloBTagCSV_p33
2018	HLT_PFHT330PT30_QuadPFJet_75_60_45_40_TriplePFBTagDeepCSV_4p5
	<pre>HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71</pre>

^{*} Json files stored in: /eos/cms/store/group/phys_higgs/hbb/ntuples/VHH4b_Vleptonic_SF_UL

Analysis Topologies

Leptonic Channels $R_{HH} = \sqrt{(M(H_1) - 125)^2 + (M(H_2) - 125)^2}$

- Signal Region(SR): RHH < 25GeV
- ▶ Control Region(CR): 25GeV< R_{HH} <50GeV
- SideBand(SB): 50GeV < R_{HH} < 75GeV
- 1 2b-tagged events are re-weighted to mimic the background in 3/4b-tagged regions.(DL)

Hadronic Channels

- Signal Region
- Control Region
- Sideband

$$\sqrt{\left(\frac{m_1 - (125.0 \times 1.02)\text{GeV}}{0.1m_1}\right)^2 + \left(\frac{m_2 - (125.0 \times 0.98)\text{GeV}}{0.1m_2}\right)^2} < 1.9$$

$$\sqrt{(m_1 - (125.0 \times 1.02)\text{GeV})^2 + (m_2 - (125.0 \times 0.98)\text{GeV})^2} < 30\text{GeV}$$

$$\sqrt{(m_1 - (125.0 \times 1.02)\text{GeV})^2 + (m_2 - (125.0 \times 0.98)\text{GeV})^2} < 45\text{GeV}$$

Boosted Topology

MET+SL

- High Purity (**HP**) : Dbb > 0.94
- Low Purity(LP): 0.90<Dbb<0.94
- Validation Region(Fail): 0.80<Dbb<0.90</p>
- Follow the thresholds as in the VBFHH4b AN.
- Orthogonal variable R_{HH} is also used to define SR[0,50]GeV and SB[50,75]GeV
- 1 HP+LP & SR are the research regions
- ② HP+LP & SR are the control regions
- 3 FR MC are <u>re-weighted</u> to mimic the background in research regions
 Partial NIA

 $D_{bb} = \frac{ParticleNetMD_score(X \rightarrow b\bar{b})}{ParticleNetMD_score(X \rightarrow b\bar{b}) + ParticleNetMD_score(QCD)}$

ParticleNet for AK8 Jets

0.2

VHH Analysis

Analysis Strategies

Bring extra sensitivity over K_{λ}

- Samples used for training is Kl = 20 vs Kl = 0
- 3 year MC are combined for training
- Variables and BDT models are optimized in all channels

SvB Classifiers

SvB Classifiers

SvB Classifiers

- In V-Leptonic channel
 - 3 channels X 2 Kl Cats = 6 SvB BDTs
- In V-Hadronic channel
 - An ResNet based **SvB Classifier** is trained
 - Signal labeled by K_λ Cats.

SvB Classifier scores will be used as the observables for template fit

Background modeling

MET, SL channel

- Dominant backgrounds are TT, TTBB (Stitched).
- Re-weighted over top pT. SFs according to the study by top PAG. Uncertainty included.

• Validation of All 3 years (link) done!

Background modeling

Double-Lepton Channel

- Main background are TT, DY+Jets
 - Re-weight BDTs are trained to include the information about the differences between 2b-tagged events and 3/4 b-tagged events.
 - 2 main BKGs and 2 b-jet multiplicities introduce 4 RwT. BDTs to realize the re-weighting.
 - SB events are used for training, CR for validation and finally apply on SR events.
 - Input variables are same as the SvB BDTs.

Smaller Stat. Uncertainties; Reliable background model;

- Inside Z mass window, a fraction fit is applied in every regions to achieve better Data/MC agreement.
- DY/TT process will free float in the final fit.

Background modeling(Boosted)

- Main background are TT(TTBB)
- Same strategy from previous slides about DL channel
- Re-weight events in FR to mimic LP, HP
- 2 sets of weights

Research region also requires rHH < 50GeV and SB is [50,75]GeV

pT(V)	pT(H1)	pT(H2)	pT(HH)
m(H1)	m(H2)	m(HH)	Phi(V)
Phi(H1)	Phi(H2)	Tau32(J1)	Tau21(J1)
Tau32(J2)	Tau21(J2)		
Variables for RwT BDTs and SvB Classifier in Boosted			

- Topology priority
 - By comparing the limit scan results
- Conclusion
 - prioritize the Boosted topology

Boosted topology of the SL, MET channels are included

Background modeling

FH channel

- Main backgrounds are QCD Multijets and TT.
- Multijets process is estimated with re-weighted 3-btagged data events.(2 orders fit)
 - Jet Combinatoric Model(JCM): A weight only based on jet multiplicity (pseudo-tag rate fitted in the data minus TT with JCM) $w_{\text{JCM}} = t \sum_{i=1}^{n} \binom{n}{i} \times f^{i} (1-f)^{n-i} \times \left[1 + (i \mod 2) \times e/n^{d}\right]$
 - FvT Classifier: A weight mostly based on kinematic, derived by a neural network which has the same architecture as the SvB Classifier. $P(M) = P(M_{4b}) + P(M_{3b}) \\ = P(D_{4b}) P(t\bar{t}_{4b}) + P(D_{3b}) P(t\bar{t}_{3b})$

$$r_{\mathrm{FvT}} \times w_{\mathrm{JCM}}$$

^{*} Background systematic uncertainty is extracted from a mixed sample based closure test.

Post-Fit plots in SB and TTCR

SB and TT CR are fitted simultaneously with Analysis Regions to suppress the Dominant Backgrounds

Systematic Uncertainties

Systematic uncertainties

	Wev	Wμν	Ζνν	Zll	FH
	Expe	eriment	al unce	ertain	ties
autoMCStats	Y	Y	Y	Y	Y
BR_hbb	Y	Y	Y	Y	Y
Luminosity	Y	Y	Y	Y	Y
CMS_TT_norm	Y	Y	Y	Y	N
CMS_TTB_norm	Y	Y	Y	Y	N
CMS_DY_norm	N	N	N	Y	N
CMS_PNet	Y	Y	Y	N	N
CMS_btag	Y	Y	Y	Y	Y
CMS_eff_lepton	Y	Y	N	Y	N
CMS_eff_MET	N	N	Y	N	N
CMS_pileup	Y	Y	Y	Y	W
CMS_MSD_JMR	Y	Y	Y	N	N
CMS_MSD_JMS	Y	Y	Y	N	N
CMS_res_j	Y	Y	Y	Y	Y
CMS_scale_j	Y	Y	Y	Y	Y
CMS_unclusteredEnergy	$\backslash \mathbf{Y} \backslash$	Y	Y	N	N
CMS_eff_j_PUJET_id	N	N	N	N	Y
CMS_bbbb_Multijet	N	N	N	N	Y
Re-weight DY	N	N	N	Y	N
Re-weight TT	Y	Y	Y	Y	N
Re-weight TTB	Y	Y	Y	Y	N
	The	eoretica	l unce	rtainti	es
QCDscale_VHH	Y	Y	Y	Y	Y
pdf_Higgs_VHH	Y	Y	Y	Y	Y
ZHH_NNLO	Y	Y	Y	Y	WY

• Top 30 nuisance parameters ranked in the impact plot

All systematic are included in the data-cards

Result - Upper Limit Scan

• K_{VV} vs K_λ

- Expected upper limits in different VHH sub-channels
- Powerful sensitivity by combining multiple channels
- Table: 95% exclusion [lower, upper] limits on Kv, K_{vv} and K_λ in the combined results.

Coupling	Κ _ν	Kw	K _λ
Combination	[-2.82, 2.93]	[-7.24 ,8.35]	[-25.85 , 24.64]

New Result - Upper Limit Scan

- Expected upper limits in different VHH sub-channels
- The first time probing Kzz and Kww!
- Table: 95% exclusion [lower, upper] limits on Kv, $K_{vv}(K_{ww} K_{zz})$ and K_{λ} in the combined results.

Coupling	Κ _ν	Kw	K _λ	K _{ZZ}	Kww
Combination	[-2.82, 2.93]	[-7.24 ,8.35]	[-25.85 , 24.64]	[-9.16 , 10.23]	[-8.34 , 9.79]

New Result - Limits At Points

 $\kappa_V = \kappa_{2W} = \kappa_{2Z} = 1$ $\kappa_{\lambda} = 5.5$ Median expected 68% expected ---- 95% expected 0-lep Expected: 23 1-lep Expected: 44 2-lep Expected: 40 hadronic Expected: 78 (16)combined Expected: 16 100 120 140 160 180 200 95% CL limit on $\sigma(pp \to HH)$ / σ_{Theory}

CMS Work in progress

95% CL expected
 Limit on VHH production
 At K_λ = 1.0

95% CL expected
 Limit on VHH production
 At K_λ = 5.5

- Expected signal strength at different K_{λ} strength points
- Reasonable sensitivity toward K_λ
- Powerful sensitivity at $K_{\lambda} = 5.5$ (at the positive side) considering the expectations based on SM sections.

138 fb⁻¹ (13 TeV)

VHH Analysis Likelihood Comparing Other HH Analysis

- Likelihood scan for K_{λ} comparing to other HH analysis
- Likelihood scan comparison between VHH and other analysis
- VHH provides good augment to the K_{λ} sensitivity above SM point due to non-destructive feature. (Second, only after bbyy around $K_{\lambda} = 5.5$)
- The likelihood improves around 10% start from $K_{\lambda} = 3$ and up to more than 15%.
- Data-card taken from latest version of HH Run 2 card repository

Summary

- First search for VHH production in the HH to bbbb final state in CMS
 - Complementary to ggF and VBF analyses.
 - Probe the Kzz and Kww coupling.
- Analysis strategy optimized for maximal sensitivity
 - SM K_{λ} and Strong K_{λ} categories with BDT discriminant.
 - Kinematic subcategories for maximal sensitivity.
 - Prioritize the boosted topology for better combined upper limit.
 - SvB classifiers trained in each channels for maximal sensitivity.
 - SB/TTCR are fitted simultaneously to suppress the uncertainty of the dominant backgrounds.

Background estimation

- BDT re-weighting method for accurate multidimensional modeling in stats limited channels and topologies.
- Dedicate data-driven method used for multi-jet background estimation.
- Closure tests/Validations done in control region/side band/validation regions in all channels.
- Expected Limit: 106 times the SM cross section prediction
- Couplings: K_λ [-25.85, 24.64], K_{VV} [-7.24, 8.35], K_V [-2.82, 2.93]
- First Probe correlation: K_{ZZ} [-9.16, 10.23], K_{WW} [-8.34, 9.79]
- Improve the HH combination results especially in positive K_{λ} side.

Search for Higgs boson pair production in bbb final state in association with a vector boson with the CMS detector

HIG-22-006

John Alison², Chayanit Asawatangtrakuldee¹, Agni Bethani³, Yihui Lai³, Chuyuan Liu², Chris Palmer³, Xiaohu Sun⁴, Long Wang³, <u>Licheng Zhang</u>⁴

- 1. Chulalongkorn University
- 2. Carnegie-Mellon University
- 3. University of Maryland
- 4. Peking University

23rd-27th Nov. 2022 Higgs Meeting

On behalf of PKU CMS group and VHH4b analysis team

MC samples

★ Signal Samples

- Linearly interpolate/extrapolate existing samples to get more couplings for limit scan
 - According to the talk, implemented in HHModel that used by HH analysis
- Use Moore-Penrose inverse to accommodate 8 signal samples

κ_V	κ_{2V}	κ_{λ}
0.5	1.0	1.0
1.0	0.0	1.0
1.0	1.0	0.0
1.0	1.0	1.0
1.0	1.0	2.0
1.0	2.0	1.0
1.5	1.0	1.0
1.0	1.0	20.0

 $\sigma(\kappa_{\lambda}, \kappa_{V}, \kappa_{2V}) = c^{T}(\kappa_{\lambda}, \kappa_{V}, \kappa_{2V})C^{-1}\sigma$

- ZHH signal re-weighted and scaled to NNLO
- WHH signal scaled to NLO

VHH NLO/NNLO correction

- The re-weighted LO compared with NNLO after full selection.
- ZHH signal re-weighted and scaled to NNLO
- WHH signal scaled to NLO

- ZHH signal has been further studied (<u>link</u>):
 Look at other dimensions variables after LHE_Vpt re-weighting
- Residual difference over LHE_Vpt will be calculated as a composition of systematics uncertainty.

Background MC Processes

★ DY+Jets

- DY+Jets (LO) MC are re-weighted to NLO over $p_T(V)$ (LHE_Vpt), which makes the samples softer and improves the agreement with data.
- Then scaled to NNLO by K-Factor.
- Same as VHbb Runll Analysis

Table 8: NLO sample

Channel	nB	NLO/LO
DYJetsToLL	0	$1.650 \pm 0.002 - (1.707 \pm 0.020) \times 10^{3} pT(V)$
DYJetsToLL	1	$1.534 \pm 0.010 - (1.458 \pm 0.080) \times 10^{3} pT(V)$
DYJetsToLL	2	$1.519 \pm 0.019 - (1.916 \pm 0.140) \times 10^{3} pT(V)$

★ TTbar

- Follow the strategies in <u>tH/ttH(bb)</u> Analysis: (in Lep-Channels)
 - $t\bar{t}b\bar{b}$ in Powheg NLO $t\bar{t}$ 5FS sample is from parton shower which will bring large uncertainties.
 - Powheg NLO 4FS sample has better performance in modeling $t\bar{t} + b\bar{b}$ kinematics.
- We need to stitch together these two samples for better background modeling.
 - In each $t\bar{t}$ event, define 'additional b-jet' as a particle level b jet with pT>20GeV and |eta|<2.4 and not from top decay.
 - Replace tt + B events in tt(5FS) with ttbb(4FS)

TO NATIONAL PROPERTY OF THE PR

Leptonic Channel

- All the lepton efficiencies are measured, Json file stored*
 - <u>Electron SF</u>: Reco X ID_ISO X Trigger

Single Electron Trigger (2018)

^{*} Json files stored in: /eos/cms/store/group/phys_higgs/hbb/ntuples/VHH4b_Vleptonic_SF_UL

Leptonic Channel

- All the lepton efficiencies are measured, Json file stored*
 - Muon SF: ID X ISO X Trigger

Single Muon ID (2018)

* Json files stored in: /eos/cms/store/group/phys_higgs/hbb/ntuples/VHH4b_Vleptonic_SF_UL

Leptonic Channel

- MET Trigger SF shown in the figure
- Documented in AN 21 209, V-Leptonic SFs are good for any Vleptonic tagging UL analysis as long as our selections are used.
- Already compatible with VHbb and VHcc selections.

Efficiency measurements are done for all 4 channels

Hadronic Channel

- ★ Measure object level(and HT) turn-ons in ttbar eµ in both data and MC.
 - Emulate event-level decision by emulating individual objects and HT turn-ons.
 - Assume object turn-ons independent.
 - Verify in MC closure test (right panel).
 - Use turn-ons measured data as "calibrated" trigger decisions.

^{*} Full trigger study results reported in the <u>link</u>.

Object & Event Selections

Lepton Selection

MET

- Met Filters
- MET_pt > 150GeV (250GeV for Boosted)
- No jet (pt >30GeV and eta <10) with dPhi(Jet, MET) $<0.4 \times exp(\frac{200-MET}{50}) + 0.07$ (suppress QCD only on Higgs candidate jets)

• Single-Lepton

- Muon: (1 Muon for W)
 - |Muon_eta| < 2.4
 - Muon_pt > 25GeV
 - Muon_pfRellso04_all < max_rel_iso [0.06]
- WpT(lv) > 125GeV, dPhi(lep,MET) < 2
- Electron: (1 Electron for W)
 - |Electron_eta| < 2.5
 - Electron_pt > 32(17/18); Electron_pt > 28(16)
 - Electron_pfRelIso03_all < max_rel_iso [0.06]
 - Electon_mvaFall17V2Iso_WP90>0

Double-Lepton

- Muons: (2 Muons for Z)
 - | Muon_eta | < 2.4
 - Muon_pt > 20GeV
 - Muon_pfRelIso04_all < max_rel_iso [0.25]

- Electrons: (2 Electrons for Z)
 - |Electron_eta| < 2.5
 - Electron1_pt > 23GeV; Electron2_pt > 14GeV
 - Electron_pfRelIso03_all < max_rel_iso [0.15]
 - Electon_mvaFall17V2Iso_WP90>0
- Z mass window [80,100] GeV in DL channel
 - [80,100] GeV: Z mass region (research region)
 - Outside: TT Control region

Electron selections optimized in all 3 V-Leptonic channel

Object & Event Selections

Jets Selection

V-Leptonic channels

- GoodJets: [AK4]
 - Jet_Pt>50
 - Jet_lepFilter > 0
 - Jet_jetId > 4
 - |Jet_eta|<=2.5

- Using DeepJet b-tag [WP = Medium] (Loose in MET)
- ptCut for all 4 jets
 - MET: pT>35GeV
 - 1-lep: pT>25GeV(j1-j3), pT>15GeV(j4)
 - 2-lep: pT>20GeV

DeepJet for AK4 jets and ParticleNet for AK8 jets

- 2 leading Dbb AK8 jets [Boosted]
 - |Jet_eta|<=2.5
 - Jet_Pt > 200GeV
 - Softdrop mass>50GeV
 - mHH > 300GeV

$$\frac{ParticleNetMD_score(X \rightarrow b\bar{b})}{ParticleNetMD_score(X \rightarrow b\bar{b}) + ParticleNetMD_score(QCD)}$$

V-Hadronic channel

- >= 4 b-tagged jets
 - DeepJet>0.6
- >= 6 jets \(\forall \text{ \(\forall \) \(\forall \)
 - pT > 40 GeV
 - |eta|<2.4
 - PUID medium WP

DeepJet for AK4 jets

- Higgs Candidate Jets: (4 leading DeepJet score jets)
 - Form 2 di-jets satisfying 45GeV < m_jj < 190GeV

 $360/m_{4j} - 0.5 < \Delta R(Leading \ S_T \ dijets) < max(1.5,650/m_{4j} + 0.5) \\ 235/m_{4j} < \Delta R(Sub \ leading \ S_T \ dijets) < max(1.5,650/m_{4j} + 0.7)$

- Vector Boson Candidate Jets:
 - Pairing all candidates and find 65GeV < m_{ii} < 105GeV

Jet selections are optimized in all 4 channels

VHH Analysis Object & Event Selections

* Reconstruction of H-bosons and V-bosons

• With all the combination of the **Higgs** Candidate Jets, we choose the one that can minimize the variable DHH.

$$D_{HH} = \frac{|m_{H1} - c \times m_{H2}|}{\sqrt{1 + c^2}}$$

where H_1 and H_2 are the leading and sub-leading pT(HT in FH) Higgs candidates, respectively.

• C = 1.05 for **leptonic channels** and C = 1.04 for **hadronic channel**

- For those V-boson candidate leptons(MET) and jets that pass the object selections.
- In DL, FH channel, V-boson candidates inside a V mass window,
- In SL channel, V-boson candidates with pT>125GeV, dPhi(lep, MET)<2,
- In boosted topo, dR(Jet,V)>0.8 in MET and dR(Jet,lep)>0.8 in SL.
- Then the candidate with leading pT will be chosen.

Analysis Strategies

		!	!	!
Variables	DL	SL	MET	FH
pT(H2)/pT(H1)	V	V	✓	V
mass(HH)	V	V	✓	V
dR(H1,H2)	V	V	V	V
pT(H1)	V	V	V	V
pT(H2)		V	V	V
pT(V)	V	V	V	V
pT(HH)		V	V	V
mass(H1)		V	V	V
mass(H2)		V	V	V
E(H1)		V	V	V
E(H2)		V	V	V
E(HH)		V	V	V
eta(HH)		V	V	V
deta(H1, H2)		~	V	V
dPhi(H1, H2)		V	V	V
dPhi(V, H2)	V	✓	V	V
pT(L1)	~			
dEta(L1,L2)	V			
dPhi(L1,L2)	✓			
pT(L1)/mass(V)	✓			
pT(L2)/pT(L1)	✓	1		
dR(H2b1,H2b2)	~			
dR(H1b1,H1b2)	~			

Variables	DL	SL	MET
mass(V)	V		
mass(H1)	V	✓	V
HT(IIjjjj)/(MET)	V		✓
dPhi(V, H1)	V		
dR(H1,H2)	V		
pT(j No.4 btag)	V		
deta(H1, H2)	V		
pT(V)/pT(HH)	$\overline{\mathbf{V}}$		
dEta(L1,L2)	V		
mass(HH)	V	V	☑
E(H1)	V		
pT(j No.3 btag)	V		
pT(L1)/mass(V)	V		
dPhi(V, HH)	✓		
Eta(H1)			▽

V	aria	0	es	used	in t	the	SvB	BDTs

Variables	DL	SL	MET
pT(H1)	V	V	✓
pT(V)	V	☑	☑
pT(HH)	V	V	✓
mass(H2)		☑	✓
B-tag(H1j1)		☑	✓
B-tag(H1j2)		☑	✓
B-tag(H2j1)		V	✓
B-tag(H2j2)		☑	✓
pT(H2)		☑	✓
Phi(H1)		☑	✓
Phi(H2)		☑	✓
Phi(V)			✓
Year			
nJets_pt25		:	✓
Eta(H2)		† ! !	✓

								D 1	- 1
- V	arial	hla	sused	l in t	h۵ ۱	WK	ľΚ	m	C
V	unu	JIG.	ว บวษน		IIG .	JVL	ט ו	וע	13

Variables	DL
oT, Eta, Phi, M of all jets and Di-jets	✓
pT, Eta, Phi, M of all Di-jets	V
T, Eta, M of all Quad-jets	V
Year	V
xW	V
xbW	V

Variables used in the SvB NN

Variables used in the Kl BDTs

Coupling Cats BDT and SvB Classifiers are optimized in all channels

Background modeling

PKU - CMS - Group

33

- The (re-)weight over different processes are fitted with exponential functions.
- We calculate the uncertainty by shift the histogram left and right for one bin width.(the blue dashed lines)
- Re-weighting has been validated in control regions.

• The residual difference between data and re-weighted MC observed in SB/CR over Z_pt are covered by introducing a modeling uncertainty on DY+Jets sample.

Figure 74: $abs(d\phi(Jet, p_{\mathrm{T}}^{\mathrm{miss}}))$ vs. $p_{\mathrm{T}}^{\mathrm{miss}}$ for $\frac{MC}{Data}$. Plots from left to right are 2016,2017,2018. Selected events are in sideband, 3B or 4B. Excessive MultiJets events cluster in the bottom left corner. The red line represents $abs(d\phi(Jet, p_{\mathrm{T}}^{\mathrm{miss}})) = 0.4e^{\frac{200-p_{\mathrm{T}}^{\mathrm{miss}}}{50}} + 0.07$ and events below this line are removed.

backup

Figure 27: Data vs. MC background validation plots from 2018 in different regions. (Left: Original MC estimation; Right: Dominant background estimated using re-weighted 2-btagged MC events.)

Figure 29: Data vs. MC background validation plots from 2018 in Z mass window and SM κ_{λ} region.

backup

Six Options:

Figure 121: Postfit plots for $Z\nu\nu$ channel. The bottom row are the sideband plots, the upper row are the blinded signal region plots.

sis backup

Figure 122: Postfit plots for $Z\nu\nu$ channel. The bottom row are the sideband plots, the upper row are the blinded signal region plots.

Figure 123: Postfit plots for *Wev* channel. The bottom row are the sideband plots, the upper row are the blinded signal region plots.

Figure 124: Postfit plots for *Wev* channel. The bottom row are the sideband plots, the upper row are the blinded signal region plots.

Figure 125: Postfit plots for $W\mu\nu$ channel. The bottom row are the sideband plots, the upper row are the blinded signal region plots.

Figure 126: Postfit plots for $W\mu\nu$ channel. The bottom row are the sideband plots, the upper row are the blinded signal region plots.

backup

Figure 129: Postfit plots for Full-hadronic channel in signal region (blinded) and control region.

CMS

Figure 44: Pre-fit and Post-fit figures in TT control Region.

Figure 43: Pre-fit and Post-fit figures in rHH Side Band Region.

Figure 42: Pre-fit and Post-fit figures in rHH Control Region.

Figure 41: Pre-fit and Post-fit figures in rHH Signal Region.

Figure 130: Upper 95% CL limits on signal cross section scanned over the κ parameter of interest while fixing the other two to SM strength. x-axis is the scanned κ parameter and y-axis is the 95% CL upper limit on signal cross section. (a) Scans over κ_{WW} . (b) Scans over κ_{ZZ} . (c) Scans over κ_V . (d) Scans over κ_{χ} .

Table 39: 95% exclusion [lower, upper] limits on κ_V , κ_{WW} , κ_{ZZ} and κ_{λ} in each sub-channel and in the combined results. '-' sign means the fit didn't find an exclusion value on the POI within the scanned range shown in Figure 130.

Channel	κ_V	$\kappa_{ m WW}$	$\kappa_{\rm ZZ}$	κ_{λ}
0-lep	[-3.09,3.23]	[-13.34,14.72]	[-9.76,10.96]	[-30.00,28.88]
1-lep	[-3.21,3.30]	[-9.24,10.71]	[-,-]	[-, -]
2-lep	[-4.54,4.72]	[-,-]	[-15.91,16.41]	[-,-]
Hadronic	[-4.89,5.02]	[-27.43,28.16]	[-,-]	[-, -]
Combination	[-2.82,2.93]	[-8.34,9.79]	[-9.16,10.23]	[-25.85,24.64]

Figure 132: 2D likelihood profiles of two scan parameters as well as the position and errors of their best fit values while fixing the third parameter to its SM strength.

backup

Hadronic Channel

Figure: SvB Classifier Output

Machine Learning SvB Classifier

Input: engineered jet features

$$pT, \eta, \phi, m_j, m_{jj}, m_{4j}, \Delta R_{jj}$$

- Architecture:
- Hierarchical Combinatoric ResNet(Residual Neural Network): Learn di-jets and qua-jets features and pick the correct combination to form 2 Higgs Bosons from 4 Higgs candidate jets.
 - Multi-Head Attention Block:

Process other jets. Add di-jets features and expect a better performance.

- Output: regressed probability that an event is VHH signal.
- Samples: The signal for training is both 2017 and 2018, ZHH snd WHH.

backup

Topology priority

- ★ Since we got 2 topologies, some events can be classified as both. An inevitable question is: How to decide which event should be included as which topology?
- ★ 2 choices are tested, put all the common events into the one topology at the same time. In the plots below, R priority means put them into Resolved, B priority means Boosted topology
- * Apparently we should prioritize the Boosted topology in both channels
 - Mainly because the number of the pure Boosted events are too small

Prioritize the Boosted topology

28

New Result - Comparison to Other 4b Analysis

- Upper limit scan over
 VHH of Kyy parameter in different 4b channels
- Upper limit scan over
 VHH of K_λ parameter in
 different 4b channels
- Upper limit scan over
 VHH of Ky parameter in
 different 4b channels

- Expected upper limits comparison between VHH and ggF/VBF channels
- VHH SM cross section is of orders smaller then resolved HH, about same order to boosted VBF, reasonable results shown in plots
- VHH tends to be more boosted at SM point, comparable result with boosted VBF channel

Figure 133: Upper limits on VHH production cross section at SM coupling point divided by theoretical prediction separated by channels (left) and by data years (right).

Figure 134: Upper limits on VHH production cross section at κ_{λ} = 5.5 coupling point divided by theoretical prediction separated by channels and combination.