

Search for Higgs boson pairs production in the $bb\gamma\gamma$ final state with ATLAS detector

Qiuping Shen

INPAC, Shanghai Jiao Tong University

The 8th China LHC Physics Workshop (CLHCP2022)

2022-11-24

Outline

- Why is $HH \rightarrow bb\gamma\gamma$?
- Object and event selection
- Data/MC comparison
- Signal and background parameterization
- Systematics uncertainties
- Results and summary

W Why is $HH \rightarrow bb\gamma\gamma$?

- HH production could directly access to the **trilinear Higgs self-coupling** (λ_{hhh}) .
- Higgs to $b\overline{b}$: Largest BR (59%)
- Higgs to $\gamma\gamma$: Small BR (0.2%)
 - Excellent photon trigger and resolution
- Main Backgrounds:
 - γγ+jets and Single Higgs
 - Very clean final state
- Full Run2 $HH \rightarrow b\bar{b}\gamma\gamma$ analysis
 - ◆ Glance, PRD

Object selection

- A combination of **di-photon** and **single-photon** triggers are applied to maximize the efficiency.
 - Required two loose or medium photons with (sub-) leading pT > 35(25)GeV
 - Required one loose photon with pT > 120 or 140 GeV

• The **pre-selection** targeting the $HH \to b\bar{b}\gamma\gamma$ signature to define signal region of the analysis.

- ✓ Two tight and isolated photons
- ✓ (Sub-) leading $pT/m_{\gamma\gamma} > 0.35(0.25)$
- ✓ Di-photon invariant mass window $105 < m_{\gamma\gamma} < 160$ GeV.

- ✓ Exactly two b-jets passing the 77% efficiency WP for DL1r.
- ✓ The b-jets candidates selected by ranking them by b-tag scores they pass and tie breaking by pT.

√No leptons.

- ✓ To suppress $t\bar{t}H$ background which decays electrons or muons
- **✓** At least two jets
- **✓**Less than 6 central jets
 - ✓ To control $t\bar{t}H$ background which decays hadronically

Event selection

- Common pre-selection applied
- Two regions defined by $m_{b\bar{b}\gamma\gamma}^*$ variable:
 - High mass region: $m_{b\bar{b}\gamma\gamma}^* \ge 350 GeV$
 - ◆ Target **SM HH**
 - Low mass region: $m_{b\bar{b}\gamma\gamma}^* < 350 GeV$
 - ◆ Target **BSM HH**
- **XGBoost** method used to discriminate
 - the benchmark HH signals
 - $\gamma \gamma$, $t \bar{t} \gamma \gamma$, single Higgs
- Boundaries of the categories:
 - Maximizing the combined counting significance at signal region $m_{\gamma\gamma}$ [120,130] GeV

Category	Selection criteria
High mass BDT tight	$m_{b\bar{b}\gamma\gamma}^* \ge 350 \text{ GeV}, \text{BDT score} \in [0.967, 1]$
High mass BDT loose	$m_{b\bar{b}\gamma\gamma}^* \ge 350 \text{ GeV}, \text{BDT score} \in [0.857, 0.967]$
Low mass BDT tight	$m_{b\bar{b}\gamma\gamma}^* < 350 \text{ GeV}, \text{BDT score} \in [0.966, 1]$
Low mass BDT loose	$m_{b\bar{b}\gamma\gamma}^* \ge 350 \text{ GeV}, \text{BDT score} \in [0.967, 1]$ $m_{b\bar{b}\gamma\gamma}^* \ge 350 \text{ GeV}, \text{BDT score} \in [0.857, 0.967]$ $m_{b\bar{b}\gamma\gamma}^* < 350 \text{ GeV}, \text{BDT score} \in [0.966, 1]$ $m_{b\bar{b}\gamma\gamma}^* < 350 \text{ GeV}, \text{BDT score} \in [0.881, 0.966]$

Data/MC comparison

- Distributions of $m_{\gamma\gamma}$ in all categories
- The data-driven fractions of
 - $\gamma\gamma$, γj and di-jet background are applied.
- Total background normalized to data sideband
- Consistent within the margin of uncertaintie

(a) High mass BDT tight selection

(c) Low mass BDT tight selection

(b) High mass BDT loose selection

(d) Low mass BDT loose selection

Signal parameterization

- The HH signals are modeled in the $m_{\gamma\gamma}$ spectrum by a double-sided crystal ball (DSCB) function.
 - ◆ The parameters of the DSCB obtained by fitting on the SM ggF HH + VBF HH samples.
 - ◆ The same parameterized functions are also used for modeling the single Higgs process

Background parameterization

- ◆ The **shape of continuum background** is set by fitting
 - smoothly falling analytic function to data sidebands.
 - Functional form chosen by fitting MC background
 - The exponential function: $\exp(a \cdot m_{\gamma\gamma})$
 - Smallest number of degrees of freedom
 - Yields a consistently small bias

Systematic uncertainties

- Sensitivity of the analysis limited by the statistical precision.
- The table showing the dominant systematic uncertainties
 - ◆ The background functional form bias assessed as an additional uncertainty in total number of signal events in each category. (Spurious Signal)
 - The parton showering model
 - The photon energy resolution

Relative impact of the systematic uncertainti		
Source	Type	Nonresonant analysis <i>HH</i>
Experimental		
Photon energy resolution	Norm. + Shape	0.4
Jet energy scale and resolution	Normalization	< 0.2
Flavor tagging	Normalization	< 0.2
Theoretical		
Factorization and renormalization sca	le Normalization	0.3
Parton showering model	Norm. + Shape	0.6
Heavy-flavor content	Normalization	0.3
$\mathcal{B}(H \to \gamma \gamma, b\bar{b})$	Normalization	0.2
Spurious signal	Normalization	3.0

- Upper limits on HH production cross section calculated as a function of κ_{λ} .
 - The observed(expected) limit: 4.2(5.7) times cross section of the standard model
 - The expected constraints on κ_{λ} at 95%CL: [-2.4, 7.7], whereas the observed constraints are [-1.5, 6.7].
- The best-fit value of κ_{λ} and its uncertainty obtained by means of a negative log-likelihood scan
 - Best-fit value: $\kappa_{\lambda} = 2.8^{+2.0}_{-2.2}(^{+3.8}_{-4.3})$ for $1\sigma(2\sigma)$ confidence interval
 - Expected values: $\kappa_{\lambda} = 1.0^{+5.5}_{-2.4}(^{+7.3}_{-4.2})$ for $1\sigma(2\sigma)$ confidence interval

New strategy of event selection

- Ongoing Run2 legacy analysis: a dedicated analysis for ggFHH and VBFHH
 - Target on **upper limit on HH**, and κ_{λ} and κ_{2V} constraints
- Current new strategy with XGBoost (Work in progress):
 - Following the common preselection
 - Two layers designed to separate signals
 - Multi-class: target various κ_{λ} and κ_{2V} signal modes
 - Binary-class: target HH and backgrounds
 - Preliminary statistical expected results (stats only):

	Results
SM HH Upper Limit	5.41
SM VBFHH Upper Limit	132.49
KL constraint (length)	[-2.22, 7.28] (9.51)
K2V constraint (length)	[-0.96, 3.14] (4.10)

- The method showing promising results
- Still under development

Summary and outlook

- The published paper (PhysRevD.106.052001) gives upper limit on HH cross section and κ_{λ} constraints.
 - NJU and IHEP groups contributed VBF-category, κ_{λ} -reweighting, background decomposition and data/MC studies.
 - SJTU group contributed VBF studies, sample production, κ_{λ} -reweighting and scan, limits scan.
- The legacy analysis ongoing:
 - Target on upper limit on HH and VBFHH, and κ_{λ} and κ_{2V} constraints
 - New strategy based on XGBoost applied to do the event selection
 - Multi-class training strategy and showing promising preliminary results.
- Let's looking forward to the more fruitful results from legacy analysis
- Stay tuned for next Run3 analysis!!!

Thanks for your attention!

Email Address:

qiuping.shen@cern.ch
shen@apc.in2p3.fr

2022-11-24

Backup Slides

Event selection strategy

Data and MC samples

Monte Carlo samples

Process	Generator	PDF set	Showering	Tune
Nonresonant ggF <i>HH</i> Nonresonant VBF <i>HH</i>	POWHEG BOXv2+FT [41,42,43] MadGraph5_aMC@NLO [47]	PDFLHC [44] NNPDF3.0NLO [69]	PYTHIA8.2 [67] PYTHIA8.2	A14 [68] A14
Resonant ggF HH	MadGraph5_aMC@NLO	NNPDF2.3LO	HERWIG7.1.3 [53,54]	H7.1—Default [70]
ggF H	NNLOPS [71–73] [74,75]	PDFLHC	PYTHIA8.2	AZNLO [76]
VBF H	POWHEG BOXv2 [41,72,77–83]	PDFLHC	PYTHIA8.2	AZNLO
WH	POWHEG BOXv2	PDFLHC	PYTHIA8.2	AZNLO
$qq \rightarrow ZH$	POWHEG BOXv2	PDFLHC	PYTHIA8.2	AZNLO
$gg \rightarrow ZH$	POWHEG BOXv2	PDFLHC	PYTHIA8.2	AZNLO
tīH	POWHEG BOXv2 [78-80,83,84]	NNPDF3.0NLO	PYTHIA8.2	A14
bbH	POWHEG BOXv2	NNPDF3.0NLO	PYTHIA8.2	A14
tHq	MadGraph5_aMC@NLO	NNPDF3.0NLO	PYTHIA8.2	A14
tHW	MadGraph5_aMC@NLO	NNPDF3.0NLO	PYTHIA8.2	A14
$\gamma\gamma$ + jets	SHERPA 2.2.4 [58]	NNPDF3.0NNLO	SHERPA 2.2.4	• • •
$t\bar{t}\gamma\gamma$	MadGraph5_aMC@NLO	NNPDF2.3LO	PYTHIA8.2	• • •

BDT Variables

Variables used in the BDT

TABLE II. Variables used in the BDT for the nonresonant analysis. All vectors in the event are rotated so that the leading photon ϕ is equal to zero, while their relative azimuthal angular differences are kept unchanged.

Variable	Definition	
Photon-related kinematic variables		
$p_{ m T}/m_{\gamma\gamma}$	Transverse momentum of each of the two photons divided by the diphoton invariant mass $m_{\gamma\gamma}$	
η and ϕ	Pseudorapidity and azimuthal angle of the leading and subleading photon	
Jet-related kinematic variables		
b-tag status	Tightest fixed b-tag working point (60%, 70%, or 77%) that the jet passes	
p_{T},η and ϕ	Transverse momentum, pseudorapidity and azimuthal angle of the two jets with the highest b-tagging score	
$p_{\mathrm{T}}{}^{bar{b}},\eta_{bar{b}}$ and $\phi_{bar{b}}$	Transverse momentum, pseudorapidity and azimuthal angle of the b-tagged jets system	
$m_{bar{b}}$	Invariant mass of the two jets with the highest b-tagging score	
$H_{ m T}$	Scalar sum of the $p_{\rm T}$ of the jets in the event	
Single topness	For the definition, see Eq. (1)	

Missing transverse momentum variables

 $E_{\rm T}^{\rm miss}$ and $\phi^{\rm miss}$ Missing transverse momentum and its azimuthal angle

Data and MC sample

- Data:
 - This analysis relies on the **full Run2 dataset** => 139**fb**⁻¹

• MC samples:

♦Signals:

2022-11-24

- ggf HH samples at NLO
- Nominal samples produced by Powheg + Pythia8
- With $\kappa_{\lambda} = 1$ (SM) and $\kappa_{\lambda} = 10$
- vbf HH samples at LO
- Nominal samples using MadGraph + Pythia8
- SM samples + 12 samples with BSM values for the coupling modifiers κ_{λ} , κ_{2V} and κ_{V}

|More details about the signal | and background in backup slides

◆Backgrounds:

- Single Higgs samples including all the production modes ggH, VBFH, WH, $qq \rightarrow ZH$, $gg \rightarrow ZH$, $t\bar{t}H$, tHjb, tWH, $b\bar{b}H$
- Sherpa2 $\gamma\gamma$ +jets MC sample
- $t\bar{t}\gamma\gamma$ MC samples based on aMG@NLO + Pythia8
- The continuum background modeling is data-driven