

Higgs and HH combinations at the CMS experiment CLHCP 2022

25th November 2022

Fabio Monti

on behalf of the CMS Collaboration

Context and outline

Recently 10th anniversary of the Higgs boson discovery

 138 fb⁻¹ of CMS Run 2 dataset offers great potential for Higgs physics!

...and Run 3 data taking has just started

- From 2029 HL-LHC targeting 3000 fb⁻¹ in ~10 years of operations
- ➢ In this presentation CMS results for
 - \circ $\,$ comb. of H measurements $\,$
 - \circ $\,$ comb. of double-Higgs searches $\,$
 - \circ perspectives for HL-LHC

Target of Run 2 Higgs measurements and searches

- Test compatibility with SM
 - Precise measurements of the main H production XS and decay BR
 - Search for double-Higgs production (HH)
- Measurement of H coupling to fermions and vector bosons
 - Probe anomalies from BSM contributions
 - $\circ~$ HHVV coupling (c_{2V}) from VBF HH production
- \succ Probe properties of the H potential from H self-coupling λ
 - From HH or single-H via NLO EW corrections

• Main H production and decay channels covered with up to full Run 2 dataset (2016-2018)

Test XS and BR compatibility with the SM

- $\mu = 1.002 \pm 0.057 [\pm 0.036 (theory) \pm 0.033 (exp.) \pm 0.029 (stat.)]$
- Systematics uncertainties crucial for H measurements today and even more in future

> Overall good compatibility with SM

• Small excesses in μ_{tH} and in μ_{Zv} \rightarrow interesting to see with Run 3 datg

H couplings to fermions and vector bosons

• Coupling modifiers k to quantify couplings deviations from SM predictions

 $\sigma(i \to \mathbf{H} \to f) = \sigma_i(\vec{\kappa})$

Explored HH channels at CMS

- $H \rightarrow bb$: large BR & bkg rejection from heavy-flavour jet ID
- H final states with leptons, γ, or T_h: efficient bkg rejection

- > No HH golden channel
 - Channel sensitivities are complementary
 - Many final states covered

Upper limit on HH signal strength

No deviations from SM observed

Obs(exp) upper limit on $\mu_{\rm HH}$ of 3.4(2.5)

2.6 times better than 2016
 result scaled by lumi

- Extensive usage of ML tools
 + boosted topologies
- HH will be one of the most exciting results of Run 3
 - Scaling by end of Run 3 and combining with ATLAS very close to 1!!!

ATLAS preliminary Run 2 HHcomb Obs(exp) U.L. on μ_{HH} of **3.1**(3.1)

K

Constraints on k_{λ}

ATLAS preliminary Run 2 HHcomb

Obs. $k_{\lambda} \in [-1.0, 6.6]$ Exp. $k_{\lambda} \in [-1.2, 7.2]$

• Observed results compatible to SM predictions

Possible with Run 3 data or with

Run 2 HHcomb of CMS+ATLAS

 \bigcirc

 k_{λ} measurement from HH

First CMS measurement of
 k_λ from single-H exploiting
 differential effects on XS

Constraints on k_{2V}

• Observed results compatible to SM predictions

> $k_{2V} = 0$ excluded at >5 σ assuming $k_{\lambda} = k_t = k_V = 1$ > $k_{2V} = 0$ excluded at >3 σ for any value of k_{λ}

Evolution from the H discovery towards HL-LHC

At HL-LHC high precision tests of the SM

 Precision below 5% for all the considered couplings

Projection to 3000 fb⁻¹ of U.L.

- on μ_{HH} < 1
 - $\circ \quad \mbox{Evidence of SM HH expected} \\ \mbox{with } 4\sigma \mbox{ from } \underline{\mbox{CERN YR}} \\ \mbox{} \end{tabular}$
 - Further improvement possible through new techniques & ideas→observation?

Potential for more extensive tests of SM, e.g. EFT

Summary

- H & HH comb's provide fundamental extensive tests of SM
- Good compatibility of observations with SM predictions $\circ \mu_{H} = 1.002 \pm 0.057$ and $\mu_{HH} < 3.4$ @ 95% C.L.
 - Precision better than 10% for most of the considered H couplings
- Statistical uncertainties comparable to systematics ones for main H production and decay channels
- $k_{2V} = 0$ excluded at >5 σ assuming $k_{\lambda} = k_{t} = k_{V} = 1$
- At HL-LHC high-precision tests of the SM and potential for HH observation

Great progresses in understanding the Higgs boson since its discovery and exciting times ahead!

BACKUP

Search for non-resonant HH production

- HH production is sensitive to the Higgs trilinear coupling λ
- VBF HH is sensitive to c_{2V} coupling $\rightarrow k_{2V} = c_{2V} / c_{2V(SM)}$

Analyses included in the combination

Analyses	Integrated lumi (fb ⁻¹)	ggH	qqH	VH	ttH & tH
<u>H(yy)</u>	138	Х	Х	Х	×
<u>H(ZZ→4I)</u>	138	Х	Х	Х	X
H(WW)	138	Х	Х	Х	
<u>Н(тт)</u>	138	Х	Х	Х	
ttH multilepton(тт, WW, and ZZ)	138				Х
<u>H(Zy)</u>	138	Х	Х	Х	×
H(bb)	<u>36(ttH) 77(VH) 138(ggH)</u>	Х	Х	Х	X
<u>Η(μμ)</u>	138	Х	Х	Х	X
H(invisible)	138	X	Х	X	

 Main H production and decay channels covered with up to full Run 2 dataset (2016-2018)

Improvements during Run 2

CMS detector upgrades • e.g. new Si pixel detector → ×2 improvement of H(bb) sensitivity $\sqrt{s}=13 \text{ TeV}$ $\sqrt{s}=13 \text{ TeV}$ $\sqrt{s}=10^{-1}$ $\sqrt{s}=10^{$

10⁻³ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 b-jet efficiency

Optimized detector calibration and physics objects reco

 e.g. stable e/γ energy resolution despite higher pile-up and ECAL detector ageing

Extensive usage of ML

ttH multilepton analysis workflow

0.02

0.01

00

0.2

0.4

0.6

0.8

1.2

Supercluster m

1.4

Evolution since discovery

<u>H Discovery</u> (up to 10.4 fb^{-1} at 7-8 TeV)

 μ = 0.87 ± 0.23 [dominated by stat.]

<u>Run 1 comb</u> (up to 24.8 fb⁻¹ at 7-8 TeV) $\mu = 1.00 \pm 0.13$ [+0.08/-0.07 (theory) ± 0.07 (exp.) ± 0.09 (stat.)]

This combination (up to 138 fb⁻¹ at 13 TeV)

 $\mu = 1.002 \pm 0.057 [\pm 0.036 (theory) \pm 0.033 (exp.) \pm 0.029 (stat.)]$

- Systematics uncertainties crucial for H measurements today and even more in future
 - Reduce exp. uncertainties with new or improved approaches
 - Need of more precise theory predictions

Test XS and BR compatibility with the SM CMS 138

Good compatibility with SM for main H production & decay

H couplings with more general assumptions

Measurement assuming effective couplings for ggH, Hyy, and HZy

Assuming also H decays to invisible(=missing p_T) & undetectable (=non-closure of other BR's to unity) CMS $138 \text{ fb}^{-1}(13 \text{ TeV})$ • Observed $\pm 1 \text{ SD}(\text{stat})$ $\pm 1 \text{ SD}(\text{stat} \oplus \text{syst})$ $\pm 2 \text{ SDs}(\text{stat} \oplus \text{syst})$ κ_t $1.01\pm0.10 \pm 0.07 \pm 0.07$

Both invisible and undetectable BR's compatible with zero

What's new in full Run 2 HH searches @CMS?

• Improvement wrt <u>HH searches with 2016 dataset</u> much larger than gain in integrated luminosity

- + Selections targeting VBF HH production mechanism
- + New final states, e.g. multilepton

Fabio Monti - IHEP CAS

Outlook for the future

21

Fabio Monti - IHEP CAS

Trilinear self-coupling in single-H mechanisms

 k_λ-dependent NLO electroweak corrections to single-H XS and BR

Examples of k_{λ} -dependent diagrams for single-H prod. mechanisms $O(k_{\lambda})$

Example of k_{λ} -dependent diagrams for $H \rightarrow VV$ decay

One universal correction for H wave-function renormalization $O(k_{\lambda}^{2})$

Effect of k_{λ} corrections on Higgs XS and BR

- Effect on double-H @LO
 →large variation
- Around SM single-H XS's are larger than double-H

Global fit

- BSM phenomena affecting k_{λ} should reasonably introduce deviations in other H couplings
- Simultaneous fit of all H couplings
- Complementarity of constraints from single-H and HH fully exploited in their combination

Challenging because of overlap between single-H and HH selections
 NOT impossible! <u>ATLAS</u> preliminary result