Search for Dark Matter Produced in Association with a Dark Higgs Boson Decaying to two b quarks at ATLAS and the potential to utilize the novel DXbb tagger

Qibin LIU [TDLI. & Shanghai JiaoTong University]

bervisor: Shu Ll

https://indico.ihep.ac.cn/e/CLHCP2022

第八届中国LHC物理研讨会 The 8th China LHC Physics Workshop

2022年11月23日-27日,南京汤山颐尚酒店 Nov. 23-27, 2022, Nanjing Tangshan Yishang Hotel

CFHCb 5055 Nov. 23-27, 2022, Nanjing Tangshan Yishang Hote

Introduction

- Evidence from cosmology observation support the existence of Dark Matter (DM)
- Weakly Interacting Massive Particle (WIMP) draws wide interests across a wide range of DM mass assumption
- Dark Higgs model with similar structure as SM Higgs proposed and popularly studied in ATLAS
- Dedicated analysis for Dark Higgs Boson decaying into 2 b quarks being studied utilizing advanced methods
- New techniques well tested and promising for future : DXbb tagger

Dark Higgs Model

- Spontaneously broken U(1)' gauge symmetry introduced in WIMP framework to account for the mass in dark sector
- Scalar particle s called dark Higgs boson [1] and the vector boson Z', forming a two-mediator DM(2MDM) model [2]

$${\cal L}_{\chi} = -g_q Z'^{\mu} ar q \gamma_{\mu} q \; - rac{1}{2} g_{\chi} Z'^{\mu} ar \chi \gamma^5 \gamma_{\mu} \chi - g_{\chi} rac{m_{\chi}}{m_{Z'}} s ar \chi \chi + 2 \, g_{\chi} \, Z'^{\mu} Z'_{\mu} \left(g_{\chi} \, s^2 + m_{Z'} s
ight)$$

- Mixing between dark Higgs and SM Higgs leads to detectable products e.g. $s \rightarrow bb$, $s \rightarrow VV$ depending on the scalar mass
- New annihilation channel to SM opened up ($\chi\chi \rightarrow ss \rightarrow ...$) and relax the constraint from cosmological observation
 - Resolve the over-production issue of DM prediction

[1]: <u>1701.08780</u> [2]: 1606.07609

Signal Parameter Space

- Explore all the 4 important parameters (mS, m χ , mZ' and g χ), especially at low mass
- Extra constraint from cosmology: Ωh^2
 - Reflects the property of DM evolution and thermal equilibrium
 - DM hypothesis should predict compatible Ωh2 with obs. like <u>Plank 2018</u>
- 3 signal interpretations enable the search in a 3D parameter space (mS-mZ'-mX)

Parameter	Explain
m _s	mass of dark higgs
m_{χ}	mass of DM
$m_{z'}$	mass of heavy mediator
g_{χ}	coupling in dark sector between s, X, Z'
g_q 🔵	coupling with SM: q<->Z' fixed 0.25 as benchmark
θ	mixing angle of SM Higgs<->dark Higgs fixed according to [1]

$MonoS(\rightarrow bb)$ Analysis

- Search for low mass dark Higgs w/ b-quark pair and high MET signature using ATLAS full Run2 data
- Events triggered with large MET : MET>150GeV required in analysis
- Analysis strategies optimized according to the event topology
 - Resolved and merged regions defined based on MET and different selections/methods applied
- New techniques to analyze challenging boosted jet with varying mass
 - Jet reconstruction w/ reclustering technique (**RC jet**)
 - Jet tagging w/ ML-based mass-agnostic tagger (DXbb)

[150,200) [200	0,350) [350,500) [500,750)	[750,+∞)	
Two Small-Radius Jets		One Large-R	One Large-Radius jet (RC)	
0.7 <met pt_jj<1.3,δφ(j,met)="">20°, N_lep==0</met>				
$m_T^{b,min} > 170 GeV, m_T^{b,max} > 200 GeV$ MET_significance>12		2mJ/pT_J<0.6		
N_tagged_Jet==2		Tagging on large-	R jet(DXbb, etc)	
Dije	t mass	Large-R	jet mass	
	[150,200) [20] Two Smal $0.7 < m_T^{b,min} > 170 GetMET_signN_taggeDije$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	[150,200) [200,350) [350,500) [500,750) Two Small-Radius Jets One Large-Radius Jets One Large-Radius Jets $0.7 < MET/pT_j < 1.3, \Delta \phi(j,MET) > 20^\circ, N_j$ $m_T^{b,min} > 170 GeV, m_T^{b,max} > 200 GeV$ $2mJ/pT_j$ $m_T^{b,min} > 170 GeV, m_T^{b,max} > 200 GeV$ $2mJ/pT_j$ $MET_significance > 12$ Tagging on large- Dijet mass Large-Radius Large-Radius Large-Radius Large-Radius Large-Radius Large-Radius Large-Radius Large-	

Main Background and Control regions

- Dominant background :
 - $t\bar{t} \rightarrow bWbW, W + HF \rightarrow lv + HF$:lepton is not identified/captured
 - $Z + HF \rightarrow vv + HF$: mimic the bb + MET signature
- Changing fraction at different MET range
- Control region (CR) designed to control the yield with data:
 - One-muon region for $t\bar{t}$ and W + jets
 - Two-lepton region for Z + jets

Reconstruction of highly boosted events

- Merged region with high MET has better sensitivity since small backgrounds but challenging
- Jet reconstruction and tagging: two b-jets get highly boosted and merged
- \succ Limited support for low mass jet reconstruction \rightarrow worse sensitivity at lower signal mS
- Reclustering jet studied: jet first clustered with R=0.2 and then reclustered with AntiKt R=1.0 algorithm
- Comparable performance at high mass while lowest mass boundary extend to 20GeV

Boosted $X \rightarrow$ bb Tagging

- B-tagging of highly boosted jet is another challenge \rightarrow merged b-jets and complex composition
- Deep machine learning based tagger dealing with the challenge of boosted $X \rightarrow$ bb tagging
 - Output combining 3 probabilities being H/Top/QCD jet: $D = ln \left(\frac{p_H}{(1 f_{top})p_{OCD} + f_{top}p_{top}} \right)$
- Better classification performance than tagging the 2b separately
- Good mass agnostic feature \rightarrow no dependance on mass: really "X" \rightarrow bb

Sensitivity Study of Tagging methods

- Different large-R jet tagging studied for the merged region: targeting best signal sensitivity (smallest limit)
 - DXbb tagging v.s. 2b tagging (conventional method: counting b-tagged subjet)
- DXbb shows better sensitivity (lower limit) for all the signal points
 - Especially for the high mZ'(thus high pT) and low mass \rightarrow highly boosted region
- Different DXbb WPs compared: DXbb 50WP chosen as analysis baseline

Calibration of DXbb tagger and Application to MonoSbb

- Tagging method developed based on MC simulation must be fully calibrated to account for the data/MC difference
- Several dedicated calibrations developed in ATLAS and the scale factor (efficiency correction of data to MC) available
- Dominant processes being tagged of monoSbb analysis got correction from either calibration or constraints from data

Statistical Study and Results

- Signal strength and normalization of dominant background extracted simultaneously with fitting
- Exclusion limit at 95% C.L. set on signal model
- Complement of the sister analysis ($s \rightarrow WW$)
- At fixed m χ =200GeV and g χ =1.0, dark Higgs signal expected to be excluded with 30GeV<mS<150GeV and mZ'<3TeV
- Most sensitive for signal with mS~70GeV and excluded mZ' up to 3.5TeV

\leftarrow sister analysis search for s to WW

Statistical Study and Results

- Freeze-out relic density observation from cosmology constrains the value of $g\chi$
- Exclusion limit at 95% C.L. set for dark Higgs to probe the mS-mZ'-mχ parameter space w.r.t relic density
- mZ' around 3~4TeV is excluded with $m\chi$ =900GeV and mS<140GeV
- $m\chi$ is excluded up to ITeV at mS=70GeV and mZ' around 3~4TeV

Summary and Outlook

- Dark Higgs model as one candidate for WIMP explains the mass origin in dark sector and searched in ATLAS
- Dedicated MonoSbb analysis established focusing on dark Higgs decaying into 2b quarks with extended parameters setup especially emphasizing the relic density constraint
- Advanced techniques including reclustering large-R jet and deep learning based DXbb tagger applied
- Preliminary results expected to exclude dark Higgs model of mZ' up to 3TeV and mS between 30-150 GeV as well as other limits on 3D parameter space
- Significant sensitivity improvement from DXbb tagger and promising application in the future for highly boosted jets

BACKUPS

Comparing with other DM model in ATLAS

- In <u>ATLAS EXOT summary plot</u>, only Dirac DM for vector/axia-vector mediator is considered for simplified DM model
- In Dirac DM+mediator model, most region has been excluded in the latest summary plot
- "The coupling combination that we consider is not only theoretically more motivated but also less constrained by non-LHC experiments, which is why we prefer it."
- If really want to compare with Dirac DM case, the cross-section should times 0.5 as a rough estimation => thus existing search will have lower exclusion power

6

Uncertainty List

Objects	Systematics	
Luminosity	1.7% as priori	
Pileup	PRW_DATASF	
Small-R(0.4) jet	JES, JER, JVT, fJVT	
	DL1r tagging	
Small-R(0.2) jet	JES, JER propagated to RC	
VR Track jet	DL1r tagging	
RC large-R jet	Xbbv3 tagging	
	RC-LCTopo matching	
ET-miss	trigger efficiency	
	track-based soft term	
	track-in-jets scale unc.	
Lepton	ID/Iso/Trigger of Elec/Muon/Tau	

Group	Processes included	uncer. treatment
X → bb like	VHbb, VZ, monoSbb signal	Zbb calibration applied
1b	ttbar, single top, V+bc, V+bl	ttbar calibration applied
Non-res 2b	V+bb	Constrained by Merged Regions

Process	Sources
ttbar	ME, PS, PDF, Scale, ISR, FSR
single top	ME, PS, PDF, Scale, ISR, FSR
V+jets	ME (vs MG), PS(CKKW+QSF), PDF, Scale
Diboson	ME (vs PP), PS, PDF, Scale
VHbb	PS, PDF, Scale
ttH, ttV	(negligible)
monoSbb signal	PDF, Scale (monoHbb approach)

Calibration of DXbb

