LHCb PR testing

Software quality assurance in LHCb

Dmitry Popov (UCAS)

Research relies on software tools

- LHCb software is a large code base
 - Data acquisition, simulation, reconstruction, etc.
 - Developed by the collaboration
 - External dependencies and tools
 - Compilers, MC generators, frameworks
 - Development for the LHCb upgrade detector
- Focus is results in physics
 - Quality of SW tools directly influence results precision
 - Increased data flows drive error cost

LHCb SW development

- Projects hosted on CERN GitLab, built with LHCb nightly system (Jenkins)
- Active development relies on Cl and nightly tests
 - Style compliance, syntax errors, static code analysis
 - Major changes to applications, frameworks, building tools
 - Quick tests O(1 event), project builds/runs
- Continuous code polishing and project evolution monitoring
 - PR tests: longer, sophisticated, physics analysis O(1K-100K events)
- Some projects are validated in large central productions O(1M events)

LHCb Performance Regression tests

- Run LHCb applications, various configurations
 - MC generators, LHC conditions, detector geometry
- Typical monitoring properties:
 - Application behaviour
 - Timings, CPU/memory profiling, stack traces sampling
 - Physics analysis:
 - Numbers of tracks/vertices, momentum, energy deposits
- Size of data samples are a compromise between time and statistics
- Store results in various forms: basic types/JSON/files (e.g. ROOT)

LHCbPR workflow

PR tests queue

Running on demand (web/GitLab Cl)

PR tests schedule

Alerts

(4)

LHCbPR adoption within LHCb

- LHCbPR was initially developed for LHCb simulation
 - Now used by other projects (digitisation, reconstruction)
- Wide coverage of analysed entities and aspects
 - MC generators, fast simulation, tracking efficiencies, throughput rates
- Became a go-to tool for development monitoring
 - Routine checks, validation of software releases
- A valuable tool for upgrade detector SW development

Examples of LCHbPR tests

GEANT4

Hadronic cross-section

Calorimeter

Multiple scattering

Simplified RICH simulation

Gamma di-lepton conversion

Simulation

Detailed and fast simulation validation

Radiation length and absorption map

Detailed timing in detector volumes

CPU & memory profiling, stack traces sampling

Reconstruction

Trigger throughput profiling

Tracks monitoring

Examples of LHCbPR visualising results

Generation phase

Examples of LHCbPR visualising results

Summary

- Delivering reliable SW tools for physics analysis is a complicated task
- LHCb has adopted a multilevel verification approach
 - ✓ Initial checks with quick CI and nightly tests
 - ✓ In-depth analysis with PR tests
- LHCbPR system is now used by other projects in LHCb
 - Used in routine development monitoring and validation of releases
 - Evolving web interface and growing library of PR tests
- LHCbPR proved to be a valuable asset in SW development

Thank you for your attention!