

D^0 modification factor in pPb collisions at $\sqrt{s_{\mathrm{NN}}} = 8.16\,\mathrm{TeV}$ in LHCb

Jianqiao Wang, Tsinghua University on behalf of the LHCb collaboration

8th China LHC Physics Workshop

November 25, 2022

- Introduction
- 2 Data
- 3 Analysis strategy
 - Prompt yield extraction
 - Efficiency and systematic uncertainties
- Results
 - Cross-section
 - Forward-backward production ratio $R_{\rm FB}$
 - Nuclear modification factor R_{pPb}
- **5** Summary and outlook

Heavy quarks in heavy-ion collisions

- Heavy quarks are excellent probes of the cold and hot nuclear matter effects
 - Produced in initial hard scatterings
 - $ightharpoonup m_Q \gg \Lambda_{\rm QCD}$: allow perturbative calculations on cross-sections
 - $t_{\rm prod} \ll t_{\rm QGP}$: experience whole time evolution of collisions

- Modification of nPDFs: R_{nA}
- Initial-state and final-state energy loss
- Heavy quarkonium suppression
- Parton QCD energy loss: R_{AA}
- ullet Collective behaviour: v_2
- Strangeness enhancement: D_s^+/D^+ ratio etc.

 Hadronisation: baryon/meson ratio

Initial-state effects

- Initial-state effects are expected to dominate in D^0 production
 - Modification of the parton distribution function (PDF). The nuclear PDFs (nPDF) $f^A(x, Q^2)$ and the free-proton $f^p(x, Q^2)$ can be related by the nuclear modification factor $R^A(x, Q^2)$:

$$R^A(x,Q^2) = f^A(x,Q^2)/(A\,f^p(x,Q^2))$$

- ightharpoonup Colour glass condensate of heavy ions at low x.
- ► Initial-state energy loss from multiparticle scattering.

- A single-arm forward spectrometer, covering the pseudo-rapidity range of $2<\eta<5$
- ullet Designed for studying particles containing b or c quarks
- \bullet A general purposed detector measuring $pp/p{\rm Pb/PbPb}$ and in fixed target mode

Data configuration

• pPb data taken in 2016 at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}} = 8.16$ TeV, two collision configurations:

Ap: backward $\mathcal{L}=20.8\pm0.5$ nb⁻¹

▶ Kinematic coverage in (x, Q^2) space

▶ pPb system boosted in lab frame

$$y_{\rm lab} = y_{p\rm A} + 0.465$$

 \sim 20 times more statistics than 5.02 TeV *p*Pb

Cross-section determination

arXiv:2205.03936

- D^0 candidates reconstructed from the $K\pi$ channel, charge conjugate channels included
- The double differential cross-section defined as:

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} y \mathrm{d} p_\mathrm{T}} = \frac{N(D^0 \to K \pi)}{\mathcal{L} \times \varepsilon_\mathrm{tot} \times \mathcal{B}(D^0 \to K \pi) \times \Delta y \times \Delta p_\mathrm{T}} \ ,$$

- ▶ $N(D^0 \to K\pi)$: prompt D^0 yield, measured by invariant-mass fit and $\log_{10}(\chi^2_{\rm IP})$ fit
- \triangleright ε_{tot} : total efficiencies, estimated for each kinematic intervals using simulation samples
- \triangleright \mathcal{L} : Luminosity
- $ightharpoonup \Delta p_{\mathrm{T}}$: 0.5 GeV/c for $1 < p_{\mathrm{T}} < 6$ GeV/c and 1 GeV/c otherwise
- ► Δy : 0.25
- ▶ Kinematic coverage: $0 < p_T < 30 \,\text{GeV}/c$, $2.5 < y^* < 4.0$ (forward), $-5.0 < y^* < -2.5$ (backward)
- ▶ \mathcal{B} : branching fraction ,both $D^0 \to K^-\pi^+$ and $D^0 \to K^+\pi^-$ included

Prompt yield extraction

- Extended unbinned maximum likelihood fit performed in each kinematic bin to get the signal yield
- The inclusive D^0 yield obtained by fitting invariant mass $M(K\pi)$ distribution
- The prompt component extracted using the information of impact parametre of D^0 candidates, for which D^0 mesons from beauty decays have larger values

Efficiency and systematic uncertainties

- $\varepsilon_{\text{tot}} = \varepsilon_{\text{acc}} \times \varepsilon_{\text{rec\&sel}} \times \varepsilon_{\text{PID}} \times \varepsilon_{\text{trigger}}$
- The summary table for systematic uncertainties
 - ▶ Dominate term: tracking calibration at low $p_{\rm T}$, simulation sample size at high $p_{\rm T}$

Uncertainty source	Forward [%]	Backward [%]
Tracking calibration	3.0 - 4.7	3.1 - 10.7
PID	0.2 - 6.9	0.2 - 26.5
Trigger efficiency	0.0 - 16.5	0.0 - 4.7
Multiplicity correction	0 - 9	0 - 16
Luminosity	2.6	2.5
Branching fraction	0.8	0.8
Mass fit	0.0 - 19.3	0.1 - 6.1
$\log_{10}\left(\chi_{\mathrm{IP}}^{2}\right)$ fit	0.3 - 19.5	0.4 - 7.0
Simulation sample size	1 - 40	1 - 26

Double differential cross-section

- A similar trend of $d^2\sigma/(dydp_T)$ as a function of p_T in different y^* intervals
- Integrated cross-sections of $297.6 \pm 0.6 \pm 14.0 \,\mathrm{mb}$ for forward and $315.2 \pm 0.2 \pm 17.8 \,\mathrm{mb}$ for backward

Forward-backward production ratio

• Forward-backward production ratio is defined as :

$$R_{\rm FB}(p_{\rm T}, y^*) \equiv \frac{{\rm d}^2 \sigma_{p{\rm Pb}}(p_{\rm T}, +|y^*|)/{\rm d}p_{\rm T}{\rm d}y^*}{{\rm d}^2 \sigma_{{\rm Pb}p}(p_{\rm T}, -|y^*|)/{\rm d}p_{\rm T}{\rm d}y^*},$$

- Significant asymmetry between forward and backward collisions, suggesting the existence of cold nuclear matter effect
- Consistent with the LHCb 5.02 TeV pPb result
- In agreement with nPDF models at low $p_{\rm T}$ but discrepancy found for $p_{\rm T} > 6\,{\rm GeV}/c$
- Fully coherent energy loss (FCEL) considered as an additional effect other than nPDFs, which may not explain the differences

LHCb 5.02 TeV: JHEP 10 (2017) 090 nCTEQ: Phys. Rev. D93 (2016) 085037 EPPS16: Eur. Phys. J. C77 (2017) 163 FCEL: JHEP 01 (2022) 164

Nuclear modification factor

• Nuclear modification factor is defined as:

$$R_{p\text{Pb}}(p_{\text{T}}, y^*) \equiv \frac{1}{A} \frac{\sigma_{p\text{Pb}}(\sqrt{s_{\text{NN}}} = 8.16 \text{ TeV})}{\sigma_{pp}(\sqrt{s} = 8.16 \text{ TeV})}$$

- The pp reference $\sigma_{pp}(\sqrt{s} = 8.16 \text{ TeV})$ obtained from a power-law interpolation of σ_{pp} at $\sqrt{s} = 5.02 \text{ TeV}$ and 13 TeV
- Comparable uncertainty from the interpolation to that from σ_{pPb}

Nuclear modification factor

- Suppression compared to unity in forward rapidities, consistent with the LHCb 5.02 TeV result as well as CGC and nPDF calculations
- \bullet Lower than 5.02 TeV result in backward rapidities, possibly attributed to different Bjorken-x coverage of two energies
- Discrepancy between data and nPDF calculations for $p_T>6$ GeV/c and $-2.5< y^*<-3.5$ (2.7 -3.7σ)
- Potential initial- or final-state effects beyond modification of nPDF?

Summary and outlook

- D^0 production cross-sections measured in $p{\rm Pb}$ at $\sqrt{s_{\rm NN}}=8.16\,{\rm TeV}$ for both forward and backward rapidities, with ~ 20 times more statistics than LHCb 5.02 TeV $p{\rm Pb}$ results
- \bullet Forward backward production asymmetry observed by measuring the forward-backward production ratio $R_{\rm FB}$
- Nuclear modification factor R_{pPb} obtained by comparing the cross-section in pPb to that in pp
 - Significant suppression compared to unity in forward rapidity, consistent with the previous result and theoretical calculations
 - ▶ Discrepancy with nPDF calculations at high- p_T in backward rapidity, indicating possible initial- or final-state effects
- More models, e.g. FCEL, to be considered in the R_{pPb} calculation
- The measurements of D^+, D_s^+, Λ_c^+ hadrons to further study the final-state effects and hadronisation mechanism for heavy-flavour production
- The investigation of collective behaviour of heavy-flavour particles

Thanks