C1 and K_{EW} factors parametrization in STXS bins for constraining the Higgs boson self-coupling

Fábio L. Alves (Nanjing University) on behalf of the ATLAS Collaboration

CLHCP2022, Nanjing(CN),23-27 November 2022

Higgs boson self-coupling (κ_{λ}) measurements: overview

Measurements of the Higgs trilinear selfcoupling ($\kappa_{\lambda} = \lambda_3 / \lambda_{SM}$) can be performed through:

- DiHiggs (HH) processes: direct searches HH cross sections depend directly on κ_{λ} at LO
- Single H processes: indirect constraints
 no direct dependency on κ_λ at LO
 - sensitivity through <u>NLO EW corrections</u> to the single H processes:
 - universal $O(\lambda_3^2)$ correction due to Higgs wave-function
 - linear $O(\lambda_3)$ correction to production and decay modes

Single Higgs cross sections as a function of κ_{λ}

A parametrization of the single H cross sections and BR in terms of the κ_λ in regions defined by STXS 1.2 is performed
 Simplified Template Cross Sections (STXS): mutually exclusive regions of the phase space (highest granularity used is 1.2)

- C_1 is the process and kinematicdependent coefficients which encodes the magnitude of the κ_{λ} -dependent corrections (*linear correction*)
- Z_H^{BSM} is the wave function renormalization (from universal correction)
- K_{EW} factors represents the full set of NLO EW corrections

$$Z_H^{\text{BSM}}(\kappa_{\lambda}) = \frac{1}{1 - (\kappa_{\lambda}^2 - 1)\delta Z_H}$$
, with $\delta Z_H = -1.536 \times 10^{-3}$.

Recipe for C1 and k-factor determination

-) C1 coefficients are obtained separately for the $t\bar{t}H$, $W(l\nu)H$, Z(ll)H, and H(jj) processes:
- only inclusive C1 for ggH production mode available
- 5M of events are generated for each process using Madgraph5_aMC@NLO (v 2.5.5)using PDFset PDF4LHC15_nlo_mc
- ${\ensuremath{\scriptstyle \bullet}}$ Complex mass scheme for H(jj) process and on-shell mass scheme for other processes
- Renormalization and factorization scales are set dynamically event-by-event
- For each event, the weight representing LO cross section (w_{LO}) and the weight corrected by κ_{λ} -effects are computed (w_{NLO})
- Parton shower and hadronization performed with Pythia8.245
- Events are further classified in STXS 1.2 bins using Rivet toolkit routine and C1 for a given STXS 1.2 bin i computed as:

- \bullet K_{EW} factors are determined using LHCHXS recommendations
- C1 coefficients for the $t\bar{t}H$ process show the largest sensitivity to the κ_{λ} variations:
 - > large effect for both inclusive and differential cross
 section
- Uncertainties affecting C1 computation evaluated:
- statistical uncertainty (sample size), PDF modelling, renormalization and factorizations scales
- these source of uncertainties are found to be negligible

 C_1 coefficients

For more information:

[1]: Modeling of the single-Higgs simplified template cross-sections (STXS 1.2) for the determination of the Higgs boson trilinear self-coupling (LHC Higgs Working Group, Public Note) (LHCHWG-2022-002)

nd 😫 fn

