8th CLHCP, Nanjing, China Inclusive J/ ψ J/ ψ cross section measurement

Zhen Hu^{1,2}, Hongbo Liao³, Jinfeng Liu¹, Kai Yi^{1,2}, Taozhe Yu³, Shunliang Zhang¹

¹ Tsinghua University, ² Nanjing Normal University, ³ Institute of High Energy Physics

Introduction

- Aim: measure inclusive cross section for prompt $J/\psi J/\psi$
- The cross section has been measured at several energy points by CMS:
 - 7 TeV data analysis: published (BPH-11-021)
 - •8 TeV data analysis: thesis approved (BPH-17-001)
 - 13 TeV 2016 data analysis: superseded (BPH-17-002)
- Our analysis works on 13 TeV with full RunII data
 Inclusive J/\psi/\psi cross section will be measured
 Fraction of SPS and DPS will be measured
- Channel: $pp \rightarrow anything \rightarrow J/\psi J/\psi \rightarrow \mu^+\mu^-\mu^+\mu^-$
- $\sigma(pp \to J/\psi J/\psi) = N_{event} / [L \times \varepsilon \times BR^2 (J/\psi \to \mu^+ \mu^-)]$
 - N_{event} will be obtained from RunII data
 - L is integrated luminosity (~137 fb^{-1} for RunII for 13 TeV)
 - $\varepsilon = acceptance \times \varepsilon_{RECO} \times SF_{\mu ID} \times SF_{HLT}$
 - $BR(J/\psi \rightarrow \mu^+\mu^-)$ is obtained from PDG

Acceptance/Efficiency

Мар

• Acceptance/efficiency maps have been calculated by MC samples, e.g.

Closure Test

• A closure test has been carried out and the model independence has been demonstrated:

Closure test for acceptance:

	Weighted by:		SPS	DPS	Mix weight
	cut	N _{obs}	$N_{corr}(SPS)$	$N_{corr}(DPS)$	N _{corr} (Mix)
SPS	$ \eta(\mu) < 2.4$	576430.0	$575826.91^{+1994.34}_{-1988.52}$	$573975.22^{+3647.59}_{-3621.85}$	$575456.22^{+2324.93}_{-2316.39}$
	$p_T(\mu) > 3.5$	69385.0	$69166.62_{-2638.36}^{+2706.06}$	$68216.61^{+5307.38}_{-8976.23}$	$68977.75^{+4091.19}_{-3946.88}$
	out	N.	N (SPS)	N (DPS)	N (Miv)
DPS		Toobs	Tozoa oz±184.76	Fogle 1c+175.57	Facac aa+182.91
	$ \eta(\mu) < 2.4$	52362.0	52703.87-184.43	$52310.10_{-175.29}$	$52020.22_{-182.6}$
	$p_T(\mu) > 3.5$	211.0	$185.61^{+9.22}_{-8.95}$	$178.9^{+10.15}_{-15.31}$	$184.26^{+10.61}_{-10.25}$

Distinguishment

- The non-prompt (b decay) components may not get completely excluded by the $\mu^+\mu^-\mu^+\mu^-$ vertex cut only
 - Some variables related to the vertex position or distance may help to differentiate the two components
- Four variables are extracted for this purpose:
 - $L_{xy}PV$, $c\tau$, $Sig_{L_{xy}}$, $d^{J/\psi}$
 - The variables can be added as the third dimension (besides $M_{J/42}$ and $M_{J/42}$) of the fitting, and the best one out of four will be selected as the main distinguishment variable
- The method was tested by some artificial mixing MC samples
 Two cases (with/without µ⁺µ⁻µ⁺µ⁻vertex cut) were tested

Closure Test

- We fix some parameters to fit the mixed histograms
 Prompt sample: mean and width
 - Non-prompt sample: mean, width and alpha

0.889

• The fitted prompt (DPS) fraction and number of events are consistent with input values

 0.88 ± 0.03

23940

23812+792

Select Variable

2*DPS + 0.5*hh-> .l/w.l/w

• Relative error [%]

• $Sig_{L_{xy}}$ will be selected as the main distinguishment variable

Future Plan

- Data Ntuples are in production.
- 3D fitting code with combinatorial background component.
- AN is in preparation.

中國 斜萼 茂為 能 約 1 加克 6 Institute of High Energy Physics Chinase Academy of Sciences