

### Measurement of the proton structure parameters using the Drell-Yan forwardbackward asymmetry (A<sub>FB</sub>) at hadron colliders

Mingzhe Xie

University of Science and Technology of China 2022. 11

### **Proton structure study at the LHC**

#### **Expectations and difficulties**

- advantages: high collision energy/large data sample, significant contribution from sea quarks / heavy quarks / large range of x region
- difficulties: few observables vs mixture of various parton information



• Find new experimental observables to constrain proton structure information

# **Drell-Yan process and AFB**

### **AFB** from original EW symmetry breaking

- Spatial asymmetry as function of dilepton mass
- Different in u-type and d-type contributions, due to different Z-quark couplings



# **Drell-Yan process and AFB**

### **A**<sub>FB</sub> affected by the proton structure information

- PDF luminosities of uubar and ddbar govern the combination of the two contributions in the A<sub>FB</sub> observation: cross sections
- Unknown quark direction which dilute the spatial asymmetry: dilution effect



**Xsections: the observed Z production is the combined results of the uubar and ddbar initial states** 



Dilution: the quark directions are unknown. One needs to assume that quarks carry higher energy than antiquarks, so that the quark direction is along the dilepton system.

• No matter how PDF affects A<sub>FB</sub>, it is possible that the u and d quark contribution can be separately observed, based on the fact that their original asymmetries are different

# **Factorization on A<sub>FB</sub> and relavent proton structure information**

#### **Factorization**

• To measure the proton structure information, we need to factorize the PDF contribution in A<sub>FB</sub> into well-defined structure parameters.

Details in Phys. Rev. D 106, 033001 (2022)

$$A_{FB}(M) = \frac{\sum_{q=u,c} [1 - 2D_q(M)] \alpha_q(M)}{\alpha_{\text{total}}(M)} \cdot A_{FB}^u(M; \sin^2 \theta_{\text{eff}}^\ell) + \frac{\sum_{q=d,s,b} [1 - 2D_q(M)] \alpha_q(M)}{\alpha_{\text{total}}(M)} \cdot A_{FB}^d(M; \sin^2 \theta_{\text{eff}}^\ell) \equiv [\Delta_u(M) + P_0^u] \cdot A_{FB}^u(M; \sin^2 \theta_{\text{eff}}^\ell) + [\Delta_d(M) + P_0^d] \cdot A_{FB}^d(M; \sin^2 \theta_{\text{eff}}^\ell),$$
(1)

- The observed A<sub>FB</sub> is naturally factorized into a 2-term formality, which is the combination of the uubar and ddbar asymmetries
- The original EW asymmetries are governed by the effective weak mixing angle
- The coefficients of the two EW asymmetries, namely the weights in the combination, represent the proton structure information

# **Some discussions**

#### **Parameters at the Tevatron and LHC**

• For LHC's pp collision: separating u and d contributions. However with both q and qbar; both small x and relatively large x

$$P_0^u \propto u(x_1)\bar{u}(x_2) - u(x_2)\bar{u}(x_1)$$
  
$$P_0^d \propto d(x_1)\bar{d}(x_2) - d(x_2)\bar{d}(x_1) \qquad x_1 > x_2$$

• For Tevatron's ppbar collision: qbar and small x contributions significantly suppressed

$$P_0^u \propto u(x_1)u(x_2) - \bar{u}(x_1)\bar{u}(x_2) \approx u(x)^2$$
$$P_0^d \propto d(x_1)d(x_2) - \bar{d}(x_1)\bar{d}(x_2) \approx d(x)^2$$

• Measurements using LHC and Tevatron data provide complimentary constraints on proton structure parameters

# Measurement using the CMS data

#### AFB measured using CMS data

- LHC 8 TeV data in Run 1
- AFB vs mass measured in 4 ZY bins, up to 2.4



The A<sub>FB</sub> vs mass spectrum reported by CMS, compared to the theoretical predictions from the PDF of CT18. This plot gives an example of the AFB in the ZY bin of [1.5, 2.4]

 $u \bar{u} \rightarrow e^+e^-$ 

 $d \bar{d} \rightarrow e^+e^-$ 

150

center of mass energy

200

Asymmetry,  $A_{FB}$ 

0.8 0.6

0.4

0.2 0

-0.2 -0.4

50

100

# Measurement using the CMS data

#### Structure parameters measured in all ZY bins

- P0u consistently lower than predictions, while P0d higher than predictions
- In another word, the data indicates a stronger d-quark contribution



#### arXiv:2209.13143

$$P_0^u \propto u(x_1)\bar{u}(x_2) - u(x_2)\bar{u}(x_1)$$
$$P_0^d \propto d(x_1)\bar{d}(x_2) - d(x_2)\bar{d}(x_1)$$

Measured structure parameters from all the 4 ZY bins using the CMS 8 TeV data

### Measurement using the DØ data

#### AFB measured using DØ data

- Tevatron 1.96 TeV data in Run 2 (half DØ data set)
- AFB vs mass in an integrated ZY phase space



The AFB vs mass spectrum reported by DØ compared to the theoretical predictions from the PDF of CT18.

### Measurement using the DØ data

#### **Structure parameters**

- P0u lower than predictions, while P0d higher than predictions
- Consistent with the CMS data

arXiv:2209.13143

|          | $P_0^u$             | $P_0^d$             |
|----------|---------------------|---------------------|
| D0 data  | $0.6395 \pm 0.0361$ | $0.2706 \pm 0.0665$ |
| CT18     | $0.6994 \pm 0.0089$ | $0.1733 \pm 0.0062$ |
| MSHT20   | $0.6887 \pm 0.0066$ | $0.1658 \pm 0.0075$ |
| NNPDF3.1 | $0.6919 \pm 0.0054$ | $0.1703 \pm 0.0055$ |

$$P_0^u \propto u(x_1)u(x_2) - \bar{u}(x_1)\bar{u}(x_2) \approx u(x)^2$$
$$P_0^d \propto d(x_1)d(x_2) - \bar{d}(x_1)\bar{d}(x_2) \approx d(x)^2$$

# Some discussions

### **Correlations between P0u and P0d**

• Since P0u and P0d are simultaneously measured from one A<sub>FB</sub> spectrum, they certainly have correlations, roughly at 90%.

#### The effective weak mixing angle $sin^2\theta_W$

- $sin^2\theta_W$  is treated as a free parameter in the measurement. In another word, it is also measured simultaneously.
- However, this is not our purpose. We treat it as free parameter simply to properly deal with the correlation between PDF and EW.
- The fitted  $\sin^2\theta_W$  is consistent with the direct measurement on weak mixing angle reported by CMS and DØ using the same data sample.

#### Average magnitude and mass-evolution

- The structure parameters have P0 part and  $\Delta$  part.
- P0 represents the average magnitude of the proton structure information in the mass window under investigation. Dominant part
- $\Delta$  represents the dependence with mass. Not dominant because  $A_{FB}$  is not measured in large mass range.

# **Summary**

Details in Phys. Rev. D 106, 033001 (2022) arXiv:2209.13143

#### **A**<sub>FB</sub> factorization

• Define structure parameters, so that the u and d contributions can be separately measured

#### Measurement from the CMS and DØ data

• Both data show stronger contribution of d quark



|          | $P_0^u$             | $P_0^d$             |
|----------|---------------------|---------------------|
| D0 data  | $0.6395 \pm 0.0361$ | $0.2706 \pm 0.0665$ |
| CT18     | $0.6994 \pm 0.0089$ | $0.1733 \pm 0.0062$ |
| MSHT20   | $0.6887 \pm 0.0066$ | $0.1658 \pm 0.0075$ |
| NNPDF3.1 | $0.6919 \pm 0.0054$ | $0.1703 \pm 0.0055$ |

### Backup

# **Some discussions**

#### Average magnitude and mass-evolution

- P<sub>0</sub> parameters: dominant part, representing the magnitude of the proton structure information averaged in the mass window under investigation
- $\Delta$  parameters: secondary effect, describing the dependence with mass. Not dominant because  $A_{FB}$  is usually measured in a narrow mass window around Z pole

$$A_{FB}(M) = \frac{\sum_{q=u,c} [1 - 2D_q(M)] \alpha_q(M)}{\alpha_{\text{total}}(M)} \cdot A_{FB}^u(M; \sin^2 \theta_{\text{eff}}^\ell) + \frac{\sum_{q=d,s,b} [1 - 2D_q(M)] \alpha_q(M)}{\alpha_{\text{total}}(M)} \cdot A_{FB}^d(M; \sin^2 \theta_{\text{eff}}^\ell) \equiv [\Delta_u(M) + P_0^u] \cdot A_{FB}^u(M; \sin^2 \theta_{\text{eff}}^\ell) + [\Delta_d(M) + P_0^d] \cdot A_{FB}^d(M; \sin^2 \theta_{\text{eff}}^\ell),$$
(1)