

Long-Lived Particle Search with Lepton Colliders

Cen Mo, Shanghai Jiao Tong University

- Particles decaying a macroscopic distance are defined to be long-lived particles.
- BSM theories predict existence of LLPs.

Full simulated samples are transformed into images with 200×200 pixels and 2 channels.

Image Based

Hits of full simulated samples are clustered and are represented by nodes in a graph.

Graph Based

Each slice represents output of corresponding CNN layer.

Broken lines are short cuts of ResNet to reduce overtraining.

Thin sticks are various features extracted by CNN.

 10^{6} signal events 2 × 10⁶ background events

Signal efficiency with 0 background cut 98.18%

Preliminary Results

- Applied deep learning techniques (CNN and GNN) to LLPs search and CNN gives the best limit.
- Under 95% confidence level, the exclusion limit for branch ratio of LLPs can reach $2 * 10^{-6}$ with (expected) 10^{6} Higgs statistics, which is one of the most stringent limit for low

Signal Efficiency (CNN)	Lifetime [ns]				
Mass	0.001	0.1	1	10	100
50GeV	0.381	0.771	0.981	0.982	0.926
10GeV	0.248	0.862	0.786	0.413	λ
1GeV	0.245	0.594	0.447	0.306	\

Outlook

- Modified clustering methods can help increase signal efficiency of GNN.
- Faraway detector can further improve geometry acceptance and exclusion limit.