

Update of beampipe design and background simulation

Haoyu SHI

On behalf of the CEPC MDI Working Group

CEPC Physics and Detector Plenary Meeting

2022.4.13

- Updates on BG Simulation
- A New design of the central beampipe

Full Detector Simulation(Higgs CDR)

- The detector simulation(with a safety factor of 10 for TID/NIEL):
 - Simulate more bunches/particles
 - Read the numbers from the Figure/Histogram
 - Scale according to Luminosity(1e34/cm2/s): CDR→TDR

	CDR	TDR(30MW)	TDR(50MW)
Higgs (3T)	2.93	5.00	8.00
Z (2T)	32.1	115.0	184.0

- The detector simulation(with a safety factor of 10 for TID/NIEL):
 - Detector Impacts, Vertex : CDR→TDR(Scale)

Wei Xu

	Higgs			Z		
	CDR	TDR-30	TDR-50	CDR	TDR-30	TDR-50
Hit Density($cm^{-2} \cdot BX^{-1}$)	2.3	2.3	2.3	0.63	0.63	0.63
TID(k $rad \cdot yr^{-1}$)	930	1490	2540	10.5	3150	5360
$NIEL(n_{eq} \times \mathbf{10^{12}} \cdot cm^{-2} \cdot yr^{-1})$	2.2	3,5	6.0	23.6	70.8	120.4

• Detector Impacts, TPC : CDR→TDR(Scale)

Wei Xu

	Higgs			Z		
	CDR	TDR-30	TDR-50	CDR	TDR-30	TDR-50
Hit Density($cm^{-2} \cdot BX^{-1}$)	2.59e-2	2.59e-2	2.59e-2	6.365e-3	6.365e-3	6.365e-3
TID($\mathbf{krad} \cdot \mathbf{yr^{-1}}$)	4.385	7.483	11.973	67.53	241.93	387.09
$NIEL(n_{eq} \times \mathbf{10^{12}} \cdot cm^{-2} \cdot yr^{-1})$	0.4519	0.7712	1.234	7.415	26.565	42.503

- The detector simulation(with a safety factor of 10 for TID/NIEL):
 - Detector Impacts, Ecal Barrel : CDR→TDR(Scale)

Wei Xu

	Higgs			Z		
	CDR	TDR-30	TDR-50	CDR	TDR-30	TDR-50
Hit Density($cm^{-2} \cdot BX^{-1}$)	1.162e-3	1.162e-3	1.162e-3	2.714e-4	2.714e-4	2.714e-4
TID(k $rad \cdot yr^{-1}$)	0.319	0.544	0.871	5.505	19.722	31.555
$NIEL(n_{eq} imes \mathbf{10^{12}} \cdot cm^{-2} \cdot yr^{-1})$	0.1285	0.2193	0.3509	1.396	5.001	8.002

• Detector Impacts, Ecal Endcup: CDR→TDR(Scale)

Wei Xu

	Higgs			Z		
	CDR	TDR-30	TDR-50	CDR	TDR-30	TDR-50
Hit Density($cm^{-2} \cdot BX^{-1}$)	1.356e-3	1.356e-3	1.356e-3	2.335e-4	2.335e-4	2.335e-4
TID($\mathbf{krad} \cdot \mathbf{yr^{-1}}$)	0.2841	0.4848	0.7757	2.473	8.860	14.175
$NIEL(n_{eq} \times 10^{12} \cdot cm^{-2} \cdot yr^{-1})$	0.1248	0.2130	0.3408	1.069	3.830	6.128

- The detector simulation(with a safety factor of 10 for TID/NIEL):
 - Detector Impacts, HCal Barrel : CDR→TDR(Scale)

Wei Xu

	Higgs			Z		
	CDR	TDR-30	TDR-50	CDR	TDR-30	TDR-50
Hit Density($cm^{-2} \cdot BX^{-1}$)	2.778e-5	2.778e-5	2.778e-5	1.1e-5	1.1e-5	1.1e-5
TID(k $rad \cdot yr^{-1}$)	7.603e-3	12.974e-3	20.76e-3	0.2529	0.906	1.450
$NIEL(n_{eq} \times 10^{12} \cdot cm^{-2} \cdot yr^{-1})$	0.0116	0.198	0.317	0.1627	0.5829	0.9326

• Detector Impacts, HCal Endcup: CDR→TDR(Scale)

Wei Xu

	Higgs			Z		
	CDR	TDR-30	TDR-50	CDR	TDR-30	TDR-50
Hit Density($cm^{-2} \cdot BX^{-1}$)	1.321e-3	1.321e-3	1.321e-3	2.732e-4	2.732e-4	2.732e-4
TID($\mathbf{krad} \cdot \mathbf{yr^{-1}}$)	0.284	0.485	0.775	4.589	16.44	26.31
$NIEL(n_{eq} \times \mathbf{10^{12}} \cdot cm^{-2} \cdot yr^{-1})$	0.159	0.271	0.434	1.108	3.97	6.351

- Previous results were based on scaling of the CDR numbers
- We also performing the TDR simulation
- Starting with pair production:

- At CDR phase, we have the following design
 - 28 mm Central beampipe diameter
 - Cylinder Design

The new central beampipe design

- Moving to TDR, with high luminosity:
 - Trying to shrink the central beampipe diameter to 20mm
 - Might be better for Physics
 - Higher HOM & Higher Backgrounds

Yudong Liu

• If we still keep the cylinder design, the HOM heat would be unacceptable: P: H/W/Z/tt: 84.78w/413.6w/4097.23w/23.54w

Position	Position Start-end (mm)	material	Length (mm)	Higgs(w) & (w/cm²)	W (w) & (w/cm²)	Z(w) & (w/cm²)	ttbar (w) & (w/cm²)
Be pipe (w)	0-85	Ве	85	3.99 & 0.075	19.72 & 0.369	195.16 & 3.65	1.10 & 0.021
Be pipe transition(w)	85-130	Al	45	2.17 & 0.077	10.41 & 0.368	103.34 & 3.66	0.61 & 0.021
Transition pipe (w)	130-655	Al	525	24.90 & 0.055	121.70 & 0.268	1205.51 & 2.66	6.91 & 0.015
Transition (w)	655-700	Al	45	2.17 & 0.044	10.41 &0.210	103.34 & 2.09	0.61 & 0.012
RVC bellow (w)	700-780	Cu	80	1.85 & 0.021	8.93 & 0.102	88.24 &1.00	0.50 & 0.006
Transition on Y-crotch	780-805	Cu	25	0.57 & 0.02	2.77 & 0.095	27.61 & 0.95	0.18 & 0.006
Y- crotch (w)	805-855	Cu	50	1.18 &0.016	5.55 & 0.076	55.15 & 0.75	0.32 & 0.004
Quadrupole pipe(w)	855-1100	Cu	245	5.59 & 0.017	27.30 & 0.085	270.33 & 0.84	1.53 & 0.005
Total	0-1100	-	1100	42.39 &0.039	206.80 & 0.189	2048.69 & 1.87	11.76 & 0.011

The new central beampipe design

CEPC

- If we still keep the cylinder design, the HOM heat would be unacceptable: P: H/W/Z/tt: 84.78w/413.6w/4097.23w/23.54w
- Therefore the racetrack design comes : $4097.23w \rightarrow 1150.1w$

The new LumiCal position

<u>Suen Ho</u>u

y (mm) Bhabha electrons e-hits BHlumi X-section 80 at z = 1 m60 Beam pipe r=10 mm flat beam pipe, y= ±10 mm 40 20 -20 Bhlumi counting electrons in -40 fiducial region at z = 1me-hits -60 -80 Lab round r>20 mRad, |y|>20 mm x(mm)LAB detect both electrons CMS 10~80 mRad LAB detect ONE electron R>20 mRad R>20 mRad R>20 mRad R>20 mRad BARE1 full phi coverage cut off ±20mm full phi coverage cut off ±20 mm 457232 274420 93311 51360 Nevents 53724 701.2 238.4 131.2 Xsec (nb) 1168.3 137.3 Lab round r>15 mRad, |y|>15 mm LAB both electrons LAB ONE electron CMS 10 ~ 80 mRad

BARE1		R>15 mRad full phi coverage	R>15 mRad cut off ±15mm	R>15 mRad full phi covearge	R>15 mRad cut off ±15mm
Nevents	457232	330952	100152	204263	96221
Xsec (nb)	1168.3	845.6	255.9	521.9	245.9

Electron @ 15 mRad

Beampipe= $0.5^{Al}+0.5^{Air}+0.35^{Al}$ Distance dz in beampipe= 1.35/tan(0.015 mRad) = 90 mm

- Electrons at ϑ_{min} = 15 mRad needs a Si-layer attached on beam-pipe to minimize multiple scattering expansion σ(Z) ~ 200 μm, σ(ϑ) ~ 20 μRad,
- Inner tracker region z = 400~700 mm
 (∂ range 15 ~35 mRad) multiple scattering σ(r) = 5~10 μm use vertical Si-layers

Alignment error less than $1\mu m$

19

The new central beampipe design

Summary, tube-pipe Suen Hou Fixed $r_{u} = \pm 10$ mm, split-x to dual-pipes

- Bhabha cross-section with both electrons detected in Lab frame of Θ_{min} >15 mRad, |y|>15mm ➔ X-section ~250 nb
- LumiCal simplified (need detailed GEANT study)
 - fiducial range cut off x-axis for mechanical and probes
 - Si-layers outside Flange

two horizental flat layers upon/below beam-pipe $\rightarrow \theta_{min}$ edge vertical layers to be ampipe for θ coverage

- HOM and LumiCal both prefer the racetrack design
- LumiCal wants to change the material to Al as much as possible
- IP BPM will be added to single beampipe part
- BG simulation will be based on this new design

How about other sub-detectors?

e-hits

Summary & Outlook

• The TDR detector simulation based on CDR scaling got initial numbers:

	Hit Density($cm^{-2} \cdot BX^{-1}$)	TID(k $rad \cdot yr^{-1}$)	NIEL($n_{eq} imes 10^{12}\cdot cm^{-2}\cdot yr^{-1}$)
Vertex	2.3	5360	120.4
ТРС	2.59e-2	387.09	42.503
Ecal Barrel	1.16e-3	31.56	8.002
Ecal EndCup	1.36e-3	14.175	6.128
Hcal Barrel	2.78e-5	1.450	0.9326
Hcal EndCup	1.32e-3	26.31	6.351

• The new racetrack design of central beampipe has been made:

• The BG Simulation based on new design has been started

Thank You

Backup

Transition region: Racetrack (including materials) & power distribution C

 σ_z =5mm: Two beam in the IR

Yudong Liu

Loss factor Trap in IR @k_trap: 0.032v/pc

P_{trap}: H/W/Z/tt: 23.8w/116.1w/1150.1w/6.61w

Position	Position Start-end (mm)	material	Length (mm)	Higgs(w) & (w/cm²)	W (w) & (w/cm²)	Z(w) & (w/cm²)	ttbar (w) & (w/cm²)
Be pipe (w)	0-85	Ве	85	1.12 & 0.02	5.535 & 0.104	54.781 & 1.02	0.31 & 0.005
Be pipe transition(w)	85-130	Al	45	0.61 & 0.02	2.923 & 0.104	29.008 & 1.02	0.17 & 0.007
Transition pipe (w)	130-655	Al	525	6.99 & 0.017	34.16 & 0.085	338.39 & 0.83	1.94 & 0.005
Transition (w)	655-700	Al	45	0.61 & 0.014	2.923 & 0.069	29.008 & 0.69	0.17 & 0.003
RVC bellow (w)	700-780	Cu	80	0.52 & 0.007	2.508 & 0.035	24.77 & 0.33	0.14 & 0.002
Transition on Y-crotch	780-805	Cu	25	0.16 & 0.007	0.778 & 0.031	7.7492 & 0.31	0.05 & 0.002
Y- crotch (w)	805-855	Cu	50	0.33 & 0.005	1.557 & 0.024	15.481 & 0.24	0.09 & 0.002
Quadrupole pipe(w)	855-1100	Cu	245	1.57 & 0.005	7.663 & 0.024	75.883 & 0.24	0.43 & 0.002
Total 2022/4/13	0-1100	_ CEPC	C Physics and Do	etector Plenary Meeting, 11.9 & 0.012	^{H.SHI} 58.05 & 0.057	575.07 & 0.57	3.3 ¹⁷ & 0.003