LumiCal Design with 20mm racetreack pipe

RING CENTER

https://indico.ihep.ac.cn/event/16646/

Outline

BHLUMI : Bhabha cross section

boost by beam crossing, small beam pipe $\theta_{min} = 30 \text{ mRad} \Rightarrow \sigma(Bhabha) > 50 \text{ nb}$ $\vartheta_{min} = 15 \text{ mRad} \Rightarrow \sigma(Bhabha) > 250 \text{ nb}$

LumiCal : beampipe r, flange z → θ < 16 mRad Si layers attached beam-pipe : least multi.scattering effect Si layers behind Flange : theta coverage Q-pole front : Si layer before calo of LYSO 3x3x50 mm³ bars

Luminosity measurement

- *Reference to Z*-lineshape, $e^+e^- \rightarrow Z \rightarrow q\bar{q}$
- Luminosity of e⁺e⁻ collisions
 by measuring Bhabha elastics scattering

 $e^+e^- \rightarrow e^+e^-$

QED process, theoretical < 0.1% precision

triggering on a pair of scattered e⁺e⁻

$$\mathcal{L} = \frac{1}{\varepsilon} \frac{N_{\text{acc}}}{\sigma^{\text{vis}}} \quad \sigma = \frac{16\pi\alpha^2}{s} \cdot \left(\frac{1}{\theta_{min}^2} - \frac{1}{\theta_{max}^2}\right)$$

$$LO_{\text{diagrams}} \quad \overbrace{e^+}^{e^-} \quad \overbrace{e^+}^{Z,\gamma} \quad \overbrace{e^-}^{e^+} \quad \overbrace{z,\gamma}^{V,\gamma} \quad \overbrace{e^+}^{V,\gamma} \quad \overbrace{e$$

Bhabha detection

- $e^+e^- \rightarrow e^+e^-$ elastics scattering *Event signature* 1. $E(e^{\pm}) = E_{beam}$
 - 2. e⁺, e⁻ Back-to-Back

• NLO $e^+e^- \rightarrow e^+e^-\gamma$

~1% events

- 1. e⁺, e[−] approximately Back-to-Back
- 2. one electron E' < E_{beam}
- 3. Detector e/γ ID, spatial resolution

QED calculation, Bhabah cross section

BHLUMI theoretical precision

Bhlumi 4.04 writeup: CERN-TH/96-158

cds.cern.ch/record/310621/files/th-96-158.ps.gz http://cern.ch/~jadach/public/Bhlumi-linux-4.04-export_2002.11.05.tar.gz

Theory uncertainty: 0.25% was **BHLUMI 2**, reported in CPC package paper *http://inspirehep.net/record/321226?ln=en* **The latest BHLUMI 4 report is pushed to < 0.1%**

BHLUMI calculations

0.1

Reproduce BHLUMI to 0.1%

Bhlumi-linux-4.04-export_2002.11.05.tar.gz

Compiled by g77 on SL6, demo.f produce numbers as in paper

CERN-TH/96-158

BARE1: .024<θ₁', θ₂' <.058 s'>0.5s

0.1000 (0.2020	000000	-00000			
Xsec_BARE1	=	169.195	520371	Nanob.		
error	=	0.674	481969	Nanob.		
Xsec_CALO2	=	136.218	381786	Nanob.		
error	=	0.641	151939	Nanob.		
<u>uen@henui0</u>	34 · ~ 7.a	ork/bb]	lumi/ce	anc/dom	20	

LEP workshop95 on Bhabha established 0.1% precision

Hep-ph/9602393

demo.f
1000000 ev
KeyPia=0, KeyZet=0
CMS = 92.3 GeV
Xsec_BARE1 = 162.5295 Nanob.

Error = 0.2061 Nanob.

Table 14: Monte Carlo results for the symmetric Wide-Wide ES's BARE1, for matrix elements beyond first order. Z exchange, up-down interference switched off. The center of mass energy is $\sqrt{s} = 92.3$ GeV. Not available x

Hep-ph/9602393

User should cross-check the folowing two output cross sections which are calculated and printed at the very end of the output: Workshop95, Table14, BARE1 WW for zmin=0.5: KeyGen=3, KeyPia=0, KeyZet=0 Workshop95, Table18, CALO2 WW for zmin=0.5: KeyGen=3, KeyPia=2, KeyZet=1

	z_{min}	BHLUMI [nb]
	.100	$166.892\pm.006$
	.300	$165.374\pm.006$
	.500	$162.530\pm.006$
	.700	$155.668\pm.006$
	.900	$137.342\pm.006$
ľ		I

CEPC beam crossing

Bhabha back-to-back boosted by 33 mRad beam crossing

- Bhlumi electrons boosted for the 33 beam crossing by ~16.5 mRad to +x direction
- Compared for Bhabha selection conditions

Bhabha X sec. vs Lab z-axis round pipe

- CMS generated th1=10 mRad → boosted +16.5mRad, +X are low angle Bhabha
- Assuming beam pipe is LAB z-axis centered, radius = 30 mRad (r=30mm @z=1m) at x=+30 mm, Bhabha electrons are of θ=13.5 mRad
- → Off beam pipe, detect: one electron (262 nb) / both electrons (74.6 nb) = 3.51
 → Hori. cut +/- 30mm : one electron (51.8 nb) / both electrons (49.1 nb) = 1.05

CMS 10 ~	′ 80 mRad	LAB detect ONE electron		LAB detect both electrons		
BARE1		off beampipe	off beampipe	off beampipe	off beampipe	
		full phi coverage	cut off ±30mm	full phi coverage	cut off ±30 mm	
Nevents	457232	102535	20277	29194	19216	
Xsec (nb)	1168.3	262.0	51.81	74.60	49.10	
-2 mF	-2 mRad in radius (r=28 mRad) -2 20% increase in X section					
CMS 10 ~ 80 mRad LAB ONE electron			LAB both electrons			
BAI	RE1	off beampipe full phi coverage	off beampipe cut off ±28mm	off beampipe full phi covearge	off beampipe cut off ±28mm	
Nevents	457232	135842	24236	34847	23010	
Xsec (nb)	1168.3	347.1	61.93	89.04	58.80 14	

flat beam pipe, y= ±10 mm

Bhlumi counting electrons in fiducial region at *z* = 1*m*

Lab round r>20 mRad, |y|>20 mm

CMS 10 ~ 80 mRad		LAB detect C	NF electron	LAB detect both electrons		
BARE1		R>20 mRad	R>20 mRad	R>20 mRad	R>20 mRad	
		full phi coverage	cut off ±20mm	full phi coverage	cut off ±20 mm	
Nevents	457232	274420	53724	93311	51360	
Xsec (nb)	1168.3	701.2	137.3	238.4	131.2	

Lab round r>15 mRad, |y|>15 mm

CMS 10 ~	′ 80 mRad	LAB ONE electron		LAB both electrons	
BARE1		R>15 mRad full phi coverage	R>15 mRad cut off ±15mm	R>15 mRad full phi covearge	R>15 mRad cut off ±15mm
Nevents	457232	330952	100152	204263	96221
Xsec (nb)	1168.3	845.6	255.9	521.9	245.9

BHLUMI QED calculation, Bhabah cross section

To Do: CEPC segmentation and Event pileup estimation for 32ns bunch crossing

LumiCal for CEPC

Z=0~115 mm inner radius 28/2+1 mm 0.35mm thick inner r=28/2+1 mm, 0.35 mm thick

Z=0~115 mm

Multiple scattering off Al beampipe

- 50 GeV electron traversing Al-pipe (mm): 0.5 Al 0.5 Air 0.35 Air
 @ fixed theta, phi=0°
- o *Multiple scattering deviation* simulated for ϕ =28 mm
 - 1. exiting Al-pipe (a Scintillator layer on surface)
 - 2. no air-gap, Si-layer attached

50 GeV (θ,φ)	σ (Z)	σ(θ)	1/tan(θ)
e (40 mR <i>,</i> 0º)	86 µm	8.9 μRad	25.0
e (55 mR <i>,</i> 0º)	37 µm	7.3 μRad	18.2
e (60 mR <i>,</i> 0º)	28 µm	6.5 μRad	16.6
e (70 mR <i>,</i> 0º)	19 µm	5.8 μRad	14.3

 θ to z: r/z =tan θ 19

1

Position(Hits) – Electron shower

electron @ 55 mRad

LumiCal spatial resolution

O Calo Si-disk, front of LYSO
O Calo Si-disk, front of LYSO

Multiple Scattering behind the Flange

the **y-crotch** ϕ =40 to dual 20 mm pipes is **a low-mass, high cross section** window for Bhabha

Y-crotch window

Si-wafers on Y-crotch

LumiCal Si-wafer spatial resolution

50 GeV electron, all hits on Si wafers

(primary e⁻ and secondaries) Scan vertically phi = 90° through Y-crotch window

Multiple scattering estimated on

- 1) Octagon surrounding Al-pipe
- 2) Flange Si-disk
- 3) Y-crotch up/down slabs
- 4) LYSO front Si-disk

Lab (θ,φ)	1) σ(z) Oct Si	2) σ(x) Flg Si	3) σ(x) Y-cr. Si	4) σ (x) Ly-Si
e (15 mR, 90º)	-	-	0.55 μm	5.3 μm
e (20 mR, 90º)	-	-	0.41 μm	6.5 μm
e (25 mR, 90º)	-	-	0.88 μm	9.8 µm
e (30 mR <i>,</i> 90°)	-	_		95 µm
e (40 mR, 90º)	620 µm	52 µm		129 µm
e (55 mR, 90º)	373 μm	58 µm		114 μm
e (60 mR, 90°)	308 µm	65 µm		111 µm

asin(10./340) = 29.4 mRad asin(10./780) = 12.8 mRad asin(10./805) = 12.4 mRad asin(10./855) = 11.7 mRad asin(12./340) = 35.3 mRad asin(12./780) = 15.4 mRad asin(12./805) = 14.9 mRad asin(12./855) = 14.0 mRad asin(15./340) = 44.1 mRad asin(15./780) = 19.2 mRad asin(15./805) = 18.6 mRad asin(15./855) = 17.5 mRad

Electron @ 15 mRad

Beampipe= $0.5^{Al}+0.5^{Air}+0.35^{Al}$ Distance dz in beampipe= 1.35/tan(0.015 mRad) = 90 mm

LYSO

Electrons at ϑ_{min} = 15 mRad
 needs a Si-layer attached on beam-pipe
 to minimize multiple scattering expansion
 σ(Z) ~ 200 μm, σ(ϑ) ~ 20 μRad,

• Inner tracker region $z = 400^{700} \text{ mm}$ (ϑ range 15 ~35 mRad) multiple scattering $\sigma(r) = 5^{10} \mu m$ use vertical Si-layers

7=700 mm

2022 racetrack

Racetrack-pipe Fixed r_y= ±10mm, split-x to dual-pipes

- O Bhabha cross-section with both electrons detected in Lab frame of Θ_{min} >15 mRad, |y|>15mm
 → X-section ~250 nb
- LumiCal simplified (need detailed GEANT study)
 - fiducial range cut off x-axis for mechanical and probes
 - Si-layers outside Flange two horizental flat layers upon/below beam-pipe $\rightarrow \theta_{min}$ edge vertical layers to beampipe for θ coverage

2022

racetrack

LumiCal for CEPC

To Do:

GEANT racetrack geom

- 1. Multiple scattering
- 2. LYSO shower and pileup

Front-end for LumiCal

CEPC bunch crossing : 32 ns

N= 10³⁴/cm²s x 100 nb (Bhabha) = 10³⁸/m²s x100 x10⁻⁹ x10⁻²⁸ m² = 10³/sec

Low θ Bhabha event rate @ instant L = 10³⁴/cm²s ~ **1k Hz** Readout for LumiCal aims for : 30 ns/event

Viking type FE, outstanding S/N Long shaping time, VA ~2 μm (IHEP has a version), APV25 ~100 ns Analog output, long readout chain, requires repeater near by

Telescope with IHEP Viking (new chips in this summer) plan to build a testbeam system to study Si-wafer charge

Readout chip for LumiCal

Proposal for a fast sampling chip for Si-wafer and SiPM Compact FE for LumiCal

proposal with SMU on ASIC design: a signal sampler, and a FADC signal simpling @ 500 MHz \rightarrow FADC output (Optical link) \rightarrow FPGA event selection

Lab study with commercial boards

experience with SiPM signal with LYSO crystal, Sc137 source, testbeam, etc commercial FADC and feedback to ASIC design

LumiCal electronics

To Do: All electronics are missing