

Simulation studies on the HCAL with scintillating glass tiles

Dejing Du, Yong Liu, BaoHua Qi

CEPC Physics and Detector plenary Meeting April 21, 2022

Outline

- Motivations
- Simulation of HCAL with scintillating glass (single hadrons)
	- Preliminary performance comparison
	- Hadronic energy resolution
		- Impact of density and light yield
		- Varying thickness of glass tiles and steel plates
- A single scintillating glass tile
	- MIP response: optical simulation and cosmic ray test
	- Uniformity scan
	- Vary transverse size
- Summary

Motivations

- CEPC physics programs
	- Hadronic decays of Higgs/Z/W bosons: abundant hadrons (<10 GeV) within jets
- CEPC 4th concept detector: crystal ECAL + scintillating glass HCAL
	- A leap in terms of sampling fractions
	- Aim to improve the energy resolution: esp. the hadronic resolution

Calorimeters: crystal ECAL and Scintillating Glass HCAL

Institute of High Energy Physics Chinese Academy of Sciences

学院高能物理研究所

2022/4/20 3

Motivations

- CEPC physics programs
	- Hadronic decays of Higgs/Z/W bosons: abundant hadrons (<10 GeV) within jets
- CEPC 4th concept detector: crystal ECAL + scintillating glass HCAL
	- A leap in terms of sampling fractions
	- Aim to improve the energy resolution: esp. the hadronic resolution
	- Physics performance target: Boson Mass Resolution(BMR) 4%→3%

Outline

• Motivations

- Simulation of HCAL with scintillating glass (single hadrons)
	- Preliminary performance comparison
	- Hadronic energy resolution
		- Impact of density and light yield
		- Varying thickness of glass tiles and steel plates
- A single scintillating glass tile
	- MIP response: optical simulation and cosmic ray test
	- Uniformity scan
	- Vary transverse size
- Summary

HCAL: setup in Geant4 simulation

- HCAL geometry
	- Transverse plane: 108×108 $cm²$
		- Tile size: 3×3 cm²
	- 60 longitudinal layers, each with
		- Scintillator: 3mm
		- PCB: 2mm
		- Absorber (steel): 20mm
- Scintillator materials
	- Plastic scintillator as baseline reference
	- Replace plastic scintillator with scintillating glass
		- Component: $B_2O_3-SiO_2-Al_2O_3-Gd_2O_3-Ce_2O_3$
		- Density = 4.94 g/cm^3

Note: HCAL with 40 layers in CEPC CDR as baseline. Hereby use 60 layers to evaluate leakage effects

"SiPM-on-Tile" design for HCAL

HCAL: plastic scintillator vs scintillating glass

Institute of High Energy Physics Chinese Academy of Sciences

Energy Resolution

- Incident particle: K_L^0 (1-100GeV)
- Preliminary performance comparison
	- Same thickness of sensitive materials: 3mm
	- No energy threshold applied
- Scintillating glass: better hadronic energy resolution in low energy region (<30GeV)
	- Note that majority of hadrons in jets at CEPC are with low energy
- Further issue: constant term
	- More details in the next pages
	- "Software compensation" technique is a feasible option

Impact of thickness to hadronic energy resolution

- Incident particle: 1-100GeV K_L^0
- Varying thickness: scintillating glass tiles and steel plates
	- Each layer fixed with $\sim 0.12 \lambda_I$: the same as AHCAL (3mm plastic tile, 20mm steel)

- Energy threshold significantly impacts hadronic energy resolution
- The empirical formula $(A/\sqrt{E(GeV)}\oplus C)$ can not well describe curves
	- (Note the χ^2/ndf values) Not fully follow the Poisson distribution

Orange curve corresponds to the homogeneous HCAL

Impact of thickness to hadronic energy resolution

- Varying thickness: scintillating glass tiles and steel plates
- Extraction of stochastic and constant terms

- Energy threshold has a significant impact on the curve: energy resolution vs. glass thickness
- With the 0.5 MIP threshold, resolution will not be improved when glass thicker than 0.08 λ_I
- Higher threshold significantly degrades the constant term

Categorize energy depositions

Institute of High Energy Physics Chinese Academy of Sciences

Outline

- Motivations
- Simulation of HCAL with scintillating glass (single hadrons)
	- Preliminary performance comparison
	- Hadronic energy resolution
		- Impact of density and light yield
		- Varying thickness of glass tiles and steel plates
- A single scintillating glass tile
	- MIP response: optical simulation and cosmic ray test
	- Uniformity scan
	- Vary transverse size
- Summary

MIP response: cosmic-ray test setup and result

- MIP response: 274 p.e./MIP
- Plastic scintillator triggers cover larger area than sample does, some cosmic rays cross part of the sample

MIP response: optical simulation setup and result

- Simulation setup
	- Scintillating glass $(4.5\times4.5\times3.5mm^3)$
	- 6×6 mm^2 SiPM , air-coupling
	- Small air bubbles are included
- Incident particle: 1 GeV mu- (regard as MIP particle)

- MIP response
	- Energy deposition: 2.0 MeV/MIP
	- Detected photons: 263 p.e./MIP
- The simulation result is consistent with cosmic-ray test result
	- difference $<$ 4%

Uniformity scan for a scintillating glass tile

- Assuming change glass size does not affect its properties
- Uniformity scan: 1 GeV mu-, change hit positions
- Larger tile size leads to fewer detected photons and worse uniformity

Impact of scintillating glass tile size

- Assuming change tile size does not affect its properties
- Incident particle: 1 GeV mu-, center position

Detected photons vs. tile size

Vary transverse size, fixed tile thickness at 3 mm (AHCAL baseline design)

Tiles for AHCAL (30x30x3mm) Plastic scintillator

'SiPM-on-Tile" design for HCAL

- Realistic parameter: ~65 p.e./MIP not enough (using large size 6×6 mm^2 SiPM)
- Ideal parameter: \sim 160 p.e./MIP \rightarrow smaller size SiPM
- Next plans:
	- Study the impact of SiPM size
	- Improve uniformity through tile-designs: "SiPM-on-Tile" is a feasible option
	- Scintillating glass R&D: improve density and light yield

14W M Q" A MOU M

Institute of High Energy Physics Chinese Academy of Sciences

Summary

- A novel HCAL concept with high-density scintillating glass
	- To improve energy resolution, especially hadronic energy resolution
- Scintillating glass HCAL performance in simulation
	- Preliminary performance comparison
	- Hadronic energy resolution versus glass thickness
		- To further improve the energy resolution: "Software compensation" technique or "Dual-readout" technique
- Studies with a single scintillating glass tile (size in mm)
	- Optical simulation result is consistent with cosmic-ray test result
	- Simulation: impact of uniformity and tile size
		- Next plan: improve uniformity, study the impact of SiPM size

Backups

2022/4/20 17

HCAL: evaluate leakage effects

• Geometry size

- Baseline: 108cm×108cm×60layers(~1.5m)
- Ideal: 540cm×540cm×300layers(~7.5m)
- Incident particle: kaon0L (1-100 GeV)
- The impact of shower leakage to energy resolution in the 60 layer is estimated (~1% level)

Scintillating glass HCAL: energy deposition with K^0_L

Scintillating glass HCAL: energy deposition with K^0_L

Institute of High Energy Physics Chinese Academy of Sciences