

Hadronic performance with a homogeneous calorimeter

Yong Liu (IHEP) Apr. 20, 2022

Yong Liu (liuyong@ihep.ac.cn)

Motivations

- CEPC physics programs
 - Hadronic decays of Higgs/Z/W bosons: abundant hadrons (<10 GeV) within jets
- Crucial: hadrons in scintillator-based calorimeters
 - Within the <u>CEPC 4th concept detector</u>: crystal ECAL + scintillating glass HCAL
 - A leap in terms of sampling fractions
 - Aim to improve the energy resolution: esp. the hadronic resolution

Motivations

- CEPC physics programs
 - Hadronic decays of Higgs/Z/W bosons: abundant hadrons (<10 GeV) within jets
- Crucial: hadrons in scintillator-based calorimeters
 - Within the <u>CEPC 4th concept detector</u>: crystal ECAL + scintillating glass HCAL
 - A leap in terms of sampling fractions
 - Aim to improve the energy resolution: esp. the hadronic resolution
 - A large fraction of hadronic showers initiated in the crystal ECAL
 - Hadronic showers mostly contained in the scintillating glass HCAL
 - Synergies between crystal ECAL and scintillating glass HCAL
- Hadronic responses: key aspects to be studied
 - Calorimeter responses and performance (linearity and resolution) in Geant4
 - Geant4 validation studies: profit from existing beam test data sets

MIP calibration with muons

- MIP calibration: energy scale for reconstruction
 - Varying the energy threshold in simulation: 0 0.5 MIP

- Energy threshold: finally to be determined by several factors
 - FE electronics (pedestals, occupancy), SiPM noises, beam-related backgrounds, etc.
- CALICE prototypes: 0.3 0.5 MIP thresholds (depending on technical options)

Hadronic energy resolution: reminder

• Scenarios: varying thickness of scintillating glass tiles and steel plates

- Extraction of stochastic and constant terms
- Sampling calorimeter → Homogeneous calorimeter (rightmost points)

 Energy threshold has a significant impact on the energy resolution

Plots by Dejing Du (IHEP)

- With the 0.5 MIP threshold, resolution will not be improved when glass thicker than $\sim 0.08\lambda_I$
- Higher threshold also significantly degrades the constant term
- Lower threshold would always be desirable for better resolution

MC samples with K_L^0

4/20/2022 Yong Liu (liuyong@ihep.ac.cn)

- Starting from this page: homogeneous calorimeter with scintillating glass tiles
 - 23 mm thick tiles; large and deep layers for minimum leakage
 - Synergies between crystal ECAL and scintillating glass HCAL

- A global linear curve <u>can not</u> well calibrate the hadronic response
 - Noticeable deviations, especially in the lower energy region
- Separate energy calibrations for low and high energy regions?

Geant4 10.05.p01

Hadronic response ratio and energy resolution

Calorimeter Response Ratio

- Significantly lower response in 1-10 GeV region
- Note: scintillator quenching effects (Birks law) not yet included in the plots (ongoing studies)

Energy deposition only: digitisation not included

- Energy resolution: non-Gaussian distributions
 - Significant difference between RMS and sigma
 - Not exactly follow $1/\sqrt{E(GeV)}$ curve
 - Large constant term: >5%

Geant4 10.05.p01

- Categorize energy depositions of hadronic showers
 - Components within hadronic showers: EM, hadronic, invisible
 - EM component primarily from π^0 's produced in the hadronic cascade
 - EM energy deposition usually detected with higher efficiency

- EM component fraction: incident energy dependent
- EM/hadronic energy depositions: non-Gaussian fluctuations

4/20/2022

Geant4 10.05.p01

MC samples with π^-

Categorize energy depositions of hadronic showers

• Total energy deposition: distribution

- Geant4 simulation for homogenous calorimetry
 - Can we trust the hadronic response in Geant4?
- Limited data sets of hadron beam tests for homogenous calorimeters
 - Existing calorimeters: homogenous ≈ crystals/lead glass, primarily as ECAL
 - For crystal calorimeters: typical beam tests with electrons/gammas

- Geant4 simulation for homogenous calorimetry
 - Can we trust the hadronic response in Geant4?
- Limited data sets of hadron beam tests for homogenous calorimeters
 - Existing calorimeters: homogenous \approx crystals/lead glass, primarily as ECAL
 - For crystal calorimeters: typical beam tests with electrons/gammas
- Extensive studies with CMS calorimeters

Eur. Phys. J. C (2009) 60: 359-373

- Combined beam tests of CMS ECAL barrel (EB) and HCAL barrel (HB) prototypes
 - Note: CMS ECAL with PbWO4 crystal bars; HCAL with plastic scintillator and brass as absorber
- Valuable data sets with various species of hadrons (π^{\pm} , K^{\pm} , p/\bar{p}) in 2-350 GeV
 - Especially in the energy range of 2-10 GeV
- Geant4 validation studies with both beam tests and collision data

Validation studies: CMS calorimeters

EPJ Web of Conferences 251, 03010 (2021)

CMS combined EB+HB: selected results

Sunanda Banerjee and Vladimir Ivanchenko, Validation of Physics Models of Geant4 Versions 10.4.p03, 10.6.p02 and 10.7.p01 using Data from the CMS Experiment

Energy response (average) of protons/anti-protons

- Geant4 simulation can well reproduce hadronic responses
 - Impressive consistency: MC/data discrepancy within a few percent
 - Note: only "simple" digitization for EB+HB (Gaussian smearing for hit energy)

 \rightarrow Need a "bridge" between CMS calorimeter simulation and our simulation

Hadronic energy resolution

- How to further improve the energy resolution?
 - Distinguish EM/hadronic components
 - Event-by-event fluctuations + incident energy dependent
 - Perform event-level corrections
- Option 1: "Software compensation" technique
 - Estimators: energy deposition density, timing (new progress)
 - Established for AHCAL option and validated with prototype beamtest data
 - We can further try to explore potentials for crystal/scintillating glass options

Hadronic energy resolution

- How to further improve the energy resolution?
 - Distinguish EM/hadronic components
 - Event-by-event fluctuations + incident energy dependent
 - Perform event-level corrections
- Option 1: "Software compensation" technique
 - Estimators: energy deposition density, timing (new progress)
 - Established for AHCAL option and validated with prototype beamtest data
 - We can further explore potentials for crystal/scintillating glass options
- Option 2: "Dual-readout " technique
 - Estimators: scintillation and Chereknov light
 - EM+Had components: scintillation photons
 - EM component: mostly with Cherenkov photons
 - Some detailed potential studies in the next pages

- Energy estimators: scintillation and Chereknov light
 - Crystal/scintillating glass: possible to produce and detect scintillation photons (S) and Cherenkov photons (C) at the same time
 - Implemented in the Geant4 full simulation for homogeneous calorimetry

Energy deposition + scintillation

process: "partial" digitisation included

- "Conventional" readout scheme
 - Use only scintillation light as energy estimator

/² / ndf 0.2335/9 120 -1.586 ± 0.8739 HCAL Calibrated Energy (Scintillation) / GeV 0.7922 ± 0.03189 χ^2 / ndf 0.2655/8 100 0.02269 ± 0.184 0.6106 ± 0.05475 p1 80 χ^2 / ndf 3.365e+04 / 18 -0.4632 ± 0.002918 p1 0.7598 ± 0.0002661 60 40 20 Energy threshold: 0.5 MIP 20 80 40 60 100 120 140 Incident Particle Energy / GeV

Hadron Response in HCAL (Estimator via Scintillation)

- A global linear curve <u>can not</u> well calibrate the hadronic response
- Separate energy calibrations for low and high energy regions
 - Still not good: >20% difference for linear slopes at low/high regions

HCAL Energy Resolution (Estimator via Scintillation)

- Energy deposition: non-Gaussian distributions
 - Significant difference between RMS and sigma
- Energy resolution: not exactly follow $1/\sqrt{E(GeV)}$ curve
- Large constant term: >5%

Energy estimator with scintillation and Cherenkov

Geant4 10.05.p01

- Dual-readout readout scheme
 - Use both scintillation + Cherenkov light as energy estimator

- Good linear response resumed with the dual-readout scheme
- Deviations from the linear curve: to be evaluated

HCAL Energy Resolution (Estimator via Dual Readout)

- Energy deposition: close to Gaussian distributions
- Energy resolution: follows $1/\sqrt{E(GeV)}$ curve
- Reasonable constant term

Dual-readout simulation: further information

- Comparison of energy estimators: Cherenkov, scintillation and dual-readout
 - Minimum width for scintillation at low energy; dual-readout work mainly for high energy

• EM fraction vs. incident energy: estimator by dual-readout

Summary

- Hadronic performance studies in simulation
 - Complicated hadronic shower behaviors: non-Gaussian fluctuations
 - Synergies for new concepts: PFA-oriented crystal and scintillating glass calorimeters
 - Geant4 validation studies with CMS calorimeter data for hadronic responses
- Studies on hadronic performance with a homogeneous calorimeter
 - Homogeneous calorimeter alone does not naturally guarantee good hadronic performance
 - In contrast to the EM performance
 - Studies on the potentials of dual readout technique: good response linearity and resolution
 - Hadronic energy resolution can achieve $\sim 20\% / \sqrt{E(GeV)}$
 - Lower energy threshold is (always) favored for better performance
- Discussions and plans
 - Would be interesting to evaluate the "software compensation" potentials for crystal/scintillating glass
 - Comparison with dual readout performance
 - To establish the link among energy threshold, tile design and properties of scintillating glass
 - "Dual-readout" technique would require good UV transmission of crystal/glass

Backup

Yong Liu (liuyong@ihep.ac.cn)

• Categorize energy depositions: EM, hadronic, invisible

Energy threshold: 0

Energy threshold: 0.5 MIP

Energy sum

e/h ratio: event level

