

PDFs related for W boson mass measurement

25th Mini-workshop on the frontier of LHC-W boson mass: **Uncertainties and Opportunities**

CHEP, Peking University

May 7, 2022

Jun Gao INPAC, Shanghai Jiao Tong University

> SHANGHAI JIAO TONG UNIVERSITY Department of Physics

QCD collinear factorization

+ QCD collinear factorization ensures universal separation of long-distance and short-distance contributions in high energy scatterings involving initial state hadrons, and enables predictions on cross sections

$$(x, Q^{2}) = \sum_{i=q,\bar{q},g} \int_{0}^{1} d\xi C_{2}^{i}(x/\xi, Q^{2}/\mu_{r}^{2}, \mu_{f}^{2}/\mu_{r}^{2}, \alpha_{s}(\mu_{r}^{2})) \times f_{i/h}(\xi, \mu_{f})$$
[Collins, Soper, Sterman, 1989]

Global analysis of PDFs

QCD parameters

- with large momentum effective theory or pseudo-PDFs [2004.03543]

◆ PDFs are usually extracted from global analysis on variety of data, e.g., DIS, Drell-Yan, jets and top quark productions at fixed-target and collider experiments, with increasing weight from LHC, together with SM [see 1709.04922, 1905.06957 for recent review articles]

* diversity of the analysed data are important to ensure flavor separation and to avoid theoretical/experimental bias; possible extensions to include EW parameters and possible new physics for a self-consistent determination

* alternative approach from lattice QCD simulations, for various PDF moments or PDFs directly calculated in x-space

Major analysis groups

JAM...) using slightly different heavy-quark schemes, selections of data, and methodologies

must have as many independent analyses as possible to have a faithful determination of PDFs and their uncertainties; state of the art PDFs are extracted at NNLO in QCD and with numerous LHC data

◆ PDFs provided by several major analysis groups (CT, MSHT, NNPDF, ABM, HERAPDF, ATLASpdf, CJ,

MSHT PDFs

MSHT20 (Mass Scheme Hessian Tolerance) PDFs adopt an extended parametrization form, as comparing to MMHT14, to accomodate for newly included LHC precision data

- Central of gluon PDF remains mostly unchanged except for a suppression at x>0.2; moderate reduction on gluon uncertainty
- enhancement of s-quark at intermediate x region and large reduction on uncertainty, due to LHC 7 TeV W/Z data and update of dimuon theory calculations
- new parametrization allows a change of d-valence shape to better fit LHC W/Z data, and also large uncertainties of isospin asymmetry in small-x region

[MSHT20, 2012.04684]

NNPDFs

global survey and selection of available LHC data

NNPDF4.0 PDFs improves previous NNPDF3.1 with a major update on methodologies and a dedicated

- changes on parametrization and NN architecture, optimization algorithm; additional positivity and integrability constraints and post-fit selections
- central PDF of NNPDF4.0 is generally consistent with NNPDF3.1 except for a notable decrease of gluon PDF at x~0.1 and moderate increase of strangeness
- NNPDF4.0 shows PDF uncertainty of ~1-2% at data constrained region, largely reduced comparing to NNPDF3.1

```
[NNPDF4.0, 2109.02653]
```


ATLAS PDFs

variety of ATLAS data from 7, 8 to 13 TeV and with several new features explored

Data sets included and χ^2 [ATLAS,2112.11266]

Total χ^2 /NDF	2010/1620
HERA χ^2 /NDP	1112/1016
HERA correlated term	50
ATLAS W, Z 7 TeV χ^2 /NDP	68/55
ATLAS Z/γ^* 8 TeV χ^2/NDP	208/184
ATLAS W 8 TeV χ^2 /NDP	31/22
ATLAS W and Z/γ^* 7 and 8 TeV	
correlated term	71 = (38 + 33)
ATLAS direct γ 13/8 TeV χ^2 /NDP	27/47
ATLAS direct γ 13/8 TeV	
correlated term	6
ATLAS V+ jets 8 TeV χ^2 /NDP	105/93
ATLAS $t\bar{t}$ 8 TeV χ^2/NDP	13/20
ATLAS $t\bar{t}$ 13 TeV χ^2 /NDP	25/29
ATLAS inclusive jets 8 TeV χ^2 /NDF	207/171
ATLAS V+ jets 8 TeV and	
$t\bar{t}$ + jets 8,13 TeV and	
R = 0.6 inclusive jets 8 TeV correlated term	87 = (16 + 9 + 21 + 41)

full uncertainty consists of experimental, theoretical, model, and parametrization uncertainties; evaluated either using $\Delta \chi^2 = 1$ or $\Delta \chi^2 = 9$ (a global tolerance of T=3)

◆ ATLAS releases the most recent 2021 PDFs based on a NNLO analysis of HERA combined data and a

PDF benchmarking

have a faithful determination of PDFs and its uncertainties

♦ Many ongoing efforts on comparisons and understanding of differences of up-to-date PDFs, in order to

[Snowmass 2021, 2203.13923]

- seneral agreement between different groups (NN4.0, CT18, MSHT20, ABMP16, ATLAS21) over the range of x in 10⁻⁴ to 10⁻¹ within uncertainties
- \Rightarrow gluon: notable differences at x~0.2, with 2σ for NN vs. CT&MSHT; singlet: ATLASpdf deviate at x<10⁻⁴ due to Q²>10 GeV² applied on HERA data, and at x>0.2 due to lack of fixed-target data

NN and ABMP show uncertainty of ~1-2% in constrained region mostly due to methodologies; CT18 being conservative among all fits; ATLAS unc. blow up in unconstrained region

PDF benchmarking

• Spread of PDFs from different groups propagates into the parton-parton luminosity or cross sections at the LHC 14 TeV and some cases enlarged due to (anti-)correlations between different x-regions/flavors

- * g-g luminosity shows a spread of more than 20% in the multi-TeVs region; q-qbar luminosity agrees better in general except at a mass around 300 GeV
- * 2σ error ellipse shown for cross sections of standard candle processes; NNPDF4.0 shows an uncertainty of less than 0.5% while CT18 2 σ ellipse seems to cover most groups
- NNPDF4.0 and 3.1 show no overlaps on cross sections even at 2σ

[Snowmass 2021, 2203.13923]

Impact of LHC data

complications of the experimental systematic errors

			124
Data set	NLO	NNLO	
ATLAS W^+, W^-, Z [118]	34.7/30	29.9/30	
CMS <i>W</i> asym. $p_T > 35$ GeV [153]	11.8/11	7.8/11	
CMS asym. $p_T > 25, 30 \text{ GeV} [154]$	11.8/24	7.4/24	i o
LHCb $Z \rightarrow e^+e^-$ [155]	14.1/9	22.7/9	
LHCb W asym. $p_T > 20 \text{ GeV} [156]$	10.5/10	12.5/10	
$CMS \ Z \to e^+ e^- \ [157]$	18.9/35	17.9/35	tic
ATLAS High-mass Drell–Yan [158]	20.7/13	18.9/13	æ 0.9 +
CMS double diff. Drell–Yan [71]	222.2/132	144.5/132	
Tevatron, ATLAS, CMS $\sigma_{t\bar{t}}$ [92,93]	22.8/17	14.5/17	
LHCb 2015 W, Z [94,95]	114.4/67	99.4/67	0.8 -
LHCb 8 TeV $Z \rightarrow ee$ [96]	39.0/17	26.2/17	
CMS 8 TeV W [97]	23.2/22	12.7/22	10-2
ATLAS 7 TeV jets [18]	226.2/140	221.6/140	
CMS 7 TeV $W + c$ [98]	8.2/10	8.6/10	a (N
ATLAS 7 TeV high precision W, Z [20]	304.7/61	116.6/61	1.10
CMS 7 TeV jets [99]	200.6/158	175.8/158	
CMS 8 TeV jets [100]	285.7/174	261.3/174	
CMS 2.76 TeV jet [106]	124.2/81	102.9/81	'
ATLAS 8 TeV $Z p_T$ [74]	235.0/104	188.5/104	
ATLAS 8 TeV single diff $t\bar{t}$ [101]	39.1/25	25.6/25	
ATLAS 8 TeV single diff $t\bar{t}$ dilepton [102]	4.7/5	3.4/5	<u>i</u>
CMS 8 TeV double differential $t\bar{t}$ [104]	32.8/15	22.5/15	2
CMS 8 TeV single differential $t\bar{t}$ [107]	12.9/9	13.2/9	
ATLAS 8 TeV High-mass Drell-Yan [72]	85.8/48	56.7/48	
ATLAS 8 TeV W [105]	84.6/22	57.4/22	
ATLAS 8 TeV W + jets [103]	33.9/30	18.1/30	
ATLAS 8 TeV double differential Z [73]	157.4/59	85.6/59	
Total	5822.0/4363	5121.9/4363	0.90 └── 10 ⁻²

X² of LHC data in MSHT20

◆ LHC provides measurements on a variety of PDF-sensitive standard candle processes with precision reaching a few percents; Their impact is subjected to possible tensions among different data and

- If the fit quality to LHC data is moderate in general or very poor for specific data sets
- decorrelation/regularization of experimental systematics or theoretical errors are added to reach a reasonable \mathbf{X}^2
- appraisal and selection of LHC data become a major task

Methodology and uncertainties

samples and degrees of freedoms; PDF unc. depends very much on methodologies including "tolerance"

• Textbook criterion " $\Delta \chi^2 = 1$ " on estimation of uncertainties is not reliable in global fit, involving large data

NNPDF methodology update

- CT uses tier1+tier2 tolerance, MSHT uses a pure dynamic tolerance, both close to a hypothesis test criterion
- ✤ NNPDF3.1 uses ML algorithm with effective tolerance that is smaller than CT and MSHT as checked explicitly from reduced fits
- substantial changes on methodologies for NN4.0 vs. NN3.1 further affect the uncertainty

Summary on PDFs

- precision test and searches for new physics at the (HL-)LHC
- the LHC experimental systematics and methodologies of PDF determinations can be crucial
- simulation with improved precisions will be highly valuable

NEW TASKS in the HL-LHC ERA:

Obtain complete N2LO and N3LO predictions for PDF- sensitive processes	Improve models for correlated systematic errors	Find ways to constrain large-x PDFs without relying on nuclear targets
Develop and benchmark fast N2LO interfaces	Estimate N2LO theory uncertainties	New methods to combine PDF ensembles, estimate PDF uncertainties, deliver PDFs for applications

+ Global analyses of parton distributions demonstrate great success of QCD and on understanding internal structures of proton, and phenomenologically become more and more prominent for electroweak

• LHC delivers plenty of PDF sensitive data with high statistics and with theory evaluated almost all at NNLO; some of the N3LO calculations are already available; however, an advance on the treatment of

• With the global efforts from many groups, we are gradually approaching PDFs precision of a few percents; while LHC-independent inputs on PDFs, for instance from future DIS experiments or lattice QCD

[Snowmass 2021 PDF white paper, 2203.13923]

W boson mass measurement

◆ PDFs are key inputs for precision programs at hadron colliders, e.g., precision electroweak measurements, searches for new physics beyond the SM, especially non-resonance signatures hiding in high mass tails

W boson mass measurement

PDF unc. at LHCb, NNPDF3.1, CT18, MSHT20

$$\begin{split} m_W &= 80362 \pm 23_{\rm stat} \pm 10_{\rm exp} \pm 17_{\rm theory} \pm 9_{\rm PDF} \, \text{MeV}, \\ m_W &= 80350 \pm 23_{\rm stat} \pm 10_{\rm exp} \pm 17_{\rm theory} \pm 12_{\rm PDF} \, \text{MeV}, \\ m_W &= 80351 \pm 23_{\rm stat} \pm 10_{\rm exp} \pm 17_{\rm theory} \pm 7_{\rm PDF} \, \text{MeV}, \end{split}$$

ATLAS, CT10 + 3.8 MeV (MMHT14-CT14)

p_{T}^{ℓ}	m _T	p_{T}^ℓ	m_{T}	comb p_{T}^{ℓ}	$m_{\rm T}$
3.1	14.9	12.0	14.2	8.0	8.7
3.0 1 2	3.4 1.5	3.0 1.2	3.4 1.5	3.0 1.2	3.4 1.5
3	$p_{\rm T}^{\ell}$ 0.1 0.0 0.2	$p_{\rm T}^{\ell}$ $m_{\rm T}$ 0.1 14.9 0.0 $0.3.40.2$ 0.5	$p_{\rm T}^{\ell} m_{\rm T} p_{\rm T}^{\ell}$ $p_{\rm T}^{\ell} m_{\rm T} p_{\rm T}^{\ell}$ $p_{\rm T}^{\ell}$ $p_{\rm T}^{\ell} m_{\rm T} p_{\rm T}^{\ell}$ $p_{\rm T}^{\ell}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$p_{\rm T}^{\ell} m_{\rm T} p_{\rm T}^{\ell} m_{\rm T} p_{\rm T}^{\ell} m_{\rm T} p_{\rm T}^{\ell}$ $\frac{p_{\rm T}^{\ell}}{3.1 14.9 12.0 14.2 8.0}$ $\frac{p_{\rm T}^{\ell}}{3.0 3.4 3.0 3.4 3.0}$ $\frac{p_{\rm T}^{\ell}}{1.2 1.5 1.2}$

CDF, NNPDF3.1 only (3.9 MeV)

(other tested, CT18, MMHT14, +-2.1 MeV)

spread of predictions from different PDFs could be much larger than the PDF unc. of a specific set even for the same group the PDF unc. not necessarily decrease with time

Analyzing of W mass data with most UP-TO-DATE PDFs will be highly desirable

◆ PDFs are key inputs for precision programs at hadron colliders, e.g., precision electroweak measurements, searches for new physics beyond the SM, especially non-resonance signatures hiding in high mass tails

W/Z fiducial cross sections at Tevatron (95% C.L.)

A phenomenological study [in collaboration with K. Xie and D. Liu to appear soon; PDF unc. also studied in 2205.02788 by C.-P. Yuan+]

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_1\mathrm{d}p_2} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}^2\sigma(p_T, y)}{\mathrm{d}p_T\mathrm{d}y} \left(\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right)^{-1}\right]$$
$$\times \left[(1+\cos^2\theta) + \sum_{i=0}^7 A_i(p_T, y)P_i(\cos\theta, \phi)\right],$$

boson; while distribution of y_W is sensitive to PDFs

• Kinematics of the decayed leptons are usually factorized into several components in experimental analyses that are modeled separately; PDFs alter several of them especially rapidity and p_T of W boson

- * PDF unc. on invariant mass or angular coefficients are small; on rapidity is dominant
- * in principle only theoretical unc. on ratio $p_T(W)/p_T(Z)$ should be considered due to data-driven method in exp. analyses

Transverse mass at CDF

We estimate shift of extracted W boson mass induced by variation of PDFs, and the associated PDF uncertainty for a variety of PDFs, focusing on the kinematic variable of transverse mass at CDF

normalized m_T distribution PDF var. vs. M_W var.

CDF Run II at NLO

mean value of m_T

Transverse mass at ATLAS

PDF var. vs. M_W var.

• We estimate shift of extracted W boson mass induced by variation of PDFs, and the associated PDF uncertainty for a variety of PDFs, focusing on the kinematic variable of transverse mass at ATLAS

Constraints in CT

distribution (using mean M_T) imposed by individual data sets in the CT18 global analysis

PDF induced correlations

 $-1.00^{\frac{1}{10}}_{10}^{\frac{1}{5}}_{10}^{\frac{1}{5}}_{10}^{-3}$

◆ We carry out a series of Lagrange multiplier scans to identify the constraints on the transverse mass

Future prospect on PDF unc.

LHeC is possible; projections on M_W have been made with PDFs fitted to pseudo-data

◆ Precision on PDFs can be further improved with upcoming data from EIC(c), HL-LHC, or ultimately if

[SM Report, 1902.04070]

Future prospect on PDF unc.

measurement to profile or to constrain the PDFs, namely a spontaneous fit of M_W and PDFs

There are ongoing efforts from both CMS and ATLAS of using the same kinematic distributions for W mass

[CERN-THESIS-2021-100; Phys. Rev. D 102, 092012]

The template fit to m_W , fixing all the POIs and allowing the PDF nuisance parameters to be constrained, predicts a PDF uncertainty of 3.0 MeV on m_W . This is equivalent to the procedure performed in Ref. [11] to assess the PDF constraint, but in this framework it is possible to 3^{+} 3^{+} 3^{-2} <u>ate the constrained uncertainty directly to m_W .</u>

Thank you for your attention!

