Tailoring the mechanical property of the laser powder bed fusion manufactured 304L stainless steel by atomization atmosphere and scanning strategies

报告人: 王立毅 合作导师: 陈洁 研究员

中国科学院高能物理研究所

激光增材制造技术的发展概况

C. Li, et al., MSEA, 2017; Wan HongYuan, et al., MSEA, 2019; O. Andreau, et al., JMPT, 2019; K. Kunze, et al., MSEA, 2015; G. P. Dinda, et al., SCRIPTA MATER, 2012

Y. Morris Wang et al., Nature Materials, 2018

样品的制备

表1: 原始粉末中各种化学元素的含量

Powder	С	Ν	Si	Cr	Mn	Ni	Мо	Fe
N ₂ powder (wt. %)	0.013							Balance
Ar powder (wt. %)	0.010							Balance

Scanning strategies	304-N ₂	304-Ar
90° with shifting	N ₂ -90S	Ar-90S
90° with 7 mm chessboard	N ₂ -90C	Ar-90C
67° with 7 mm chessboard	N ₂ -67C	Ar-67C

表2: 不同的打印方式和粉末的样品名称编号

样品打印参数和扫描方式示意图

研究制粉气氛、激光扫描方式两个因 素对选区激光熔化(SLM)成形304L不 锈钢力学性能的影响及其影响机理。

粉末类型		N₂气/Ar气制粉		
实体填充	扫描速度	1100 mm/s		
	激光功率	170 W		
轮廓	扫描速度	400 mm/s		
	激光功率	175 W		
扫描间距		0.08 mm		
打印厚度		0.03 mm		
扫描方式	905	整体正交层错(四层作为 一个循环)		
	90C	正交棋盘		
	67C	67°棋盘		

90S样品扫描方式示意图

0.04

长50mm/宽8.5mm/厚5mm

	304-N材料	304-Ar材料
整体正交层错(90S)	N-90S	Ar-90S
正交棋盘(90C)	N-90C	Ar-90C
67°棋盘(67C)	N-67C	Ar-67C

为了消除打印过程中的残余应力,对以上的样品都进行了 650℃/2h的热处理

图4样品晶粒尺寸分布, (a)氮气制粉样品, (b)氩气制粉样品

图3变形前样品的组织结构, (a)-(c)氮气制粉样品, (d)-(f)氩气制粉样品。

样品的拉伸力学性能

图5 (a) 拉伸曲线, (b)加工硬化率曲线, (c)-(d)断 裂强度和延伸率。(e)-(f)样品的应变局域化对比

图6样品拉伸断口

图7样品拉伸之后表面起伏情况, (a)-(c)氮气样品, (d)-(f)氩气样品。

图 10 氩气样品变形之后的组织结构

织构对变形机制的影响

图11 氮气样品schmid因子

图12 氩气样品schmid因子

9

热处理态样品的EBSD

Ar气制粉样品	N₂气制粉样品
晶粒小	晶粒大
织构弱	织构强(立方 织构,其中67C 也比较弱)
孪晶多	无孪晶
结构对打印方 式不敏感	结构对打印方 式敏感

需要讨论Ar气的流速,样品仓Ar气的浓度等因素。: 气体循 环采用同样的风扇频率, 28.55Hz

 N_2 气和Ar气样品在拉伸过程中的应变局域化对比

断裂样品表面分析

可以看出:

1. No样品的表面粗糙度高于Ar样品

Ar样品发生以Twip效应为主导的马氏体强化, 晶粒细小, 没 有发生表面粗糙度的巨大变化。N₂样品表面粗糙度发生较大的变 化, 主要因为粗大晶粒和柱状晶粒形成的异质结构造成口字状边 界的硬度较高, 口字内部的硬度较低。(也从软取向、硬取向方 面进行讨论)。

2. 不同打印方式对表面粗糙度的影响没有明显的规律。

- 1. Ar气制粉样品含氮量较低, 层错能高较高, 造成了此材料 稳定的高强高塑性。
- 2. N₂气制粉样品中氮含量较高,这从一定程度上提高了材料的强度和塑性。
- 3. Ar气制粉有助于提高304L不锈钢的力学性能一致性;然而 N₂气氛可以与扫描方式协同作用提高材料的抗拉强度。

Thanks for Your Attention!

A MARTINIAN