

Performance study of a new epoxy resin IR-3 in HTS-based high-field magnet application

Huanli Yao¹, Yingzhe Wang¹, Chengtao Wang¹, Ze Feng¹, Jinrui Shi¹, Rui Kang¹, Chunan Li¹, Rongjin Huang^{2*}, Qingjin Xu^{1*} (¹Institute of High Energy Physics, Beijing 100049; ²Technical Institute of Physics and Chemistry, Beijing 100190)

Abstrct: REBCO (Rare-earth-based barium copper oxide) conductors are appropriate materials for high-field magnet applications. Vacuum impregnation using epoxy resin is a technique widely used for stable operation of superconducting coils. However, epoxy-impregnated REBCO coils often experience critical current degradation problems. Finding a suitable impregnating material for REBCO coils is important for their application in high-field superconducting magnets. A new toughness epoxy, IR-3, was developed recently. An in-depth understanding of IR-3 on the performance of REBCO coils is critically necessary for its application. Thus, this paper explores the effects of IR-3 impregnation on the performance of REBCO coils at 77 K and 4.2 K. The test results are compared to similar coils impregnated with CTD-101 K and MY750. Meanwhile, the radial stresses at 77 K in self-field and 4.2 K under 10 T were simulated. All epoxy impregnated REBCO coils showed no decay in critical current after thermal cycles at 77 K. When charged at 4.2 K in external fields of 5 T and 10 T, the IR-3 impregnated REBCO coils avoided performance degradation problems and had superior electrical stabilities. Combing the excellent performance at low temperatures, IR-3 is a promising candidate material for impregnating high-field REBCO coils.

Experimental section

Table 1. Parameters of the coils.

Table 2. Specifications of the epoxy systems

	Parameters	Coil 1	Coil 2	Coil 3	Coil 4	Coil 5	Coil 6	Epoxies	Resin system	Ratio by	Curing
	Coil I _c @ 77 K, [A]	103.9	106.9	106.6	106.2	107.2	107.1			weight	procedures
0	Insulation			Kap	ton			CTD-101K	DGEBA+ anhydride	100 : 90 : 1.5	5h at 110℃+ 16h at
	Winding structure			Double p	oancake				hardener +accelerator		125℃
	Inner diameter [mm]	60	60	60	50	50	50		DGEBA+ anhvdride		5h at 110℃+ 16h at
	Outer diameter [mm]	70	70	70	60	60	60	IR-3	hardener +accelerator	82:100:1	125°C
	Conductor length [cm]	690	640	640	535	550	550				
	Turns of single pancake	17	16	16	15	16	16	MY-750	DGEBA+aliphatic	100 : 55	6h at 40℃+ 3h at
Fig.1 Coil assembly.	Impregnation method	IR-3	CTD-101K	MY750	IR-3	CTD-101K	MY750		diamine hardener		80℃

The coil performance at 4.2 K in external fields

Fig. 5. (a) Schematic illustration of the fixed coil; (b) analysis result for the radial stress at 4.2 K; (c) the V-I characteristics of short tape at 4.2 K under 5 T and 10 T.

Fig. 3 (a) Modeling of the thermal contraction for the epoxy-impregnated coil and (b) analysis result for the r-directional normal stress.

Table 3. Minimum quench energy

Operating current	Coil 4	ł	Coil 5		Coil 6		
	D=50mm, R=	350.6 Ω	D=50mm, R=	350.4 Ω	D=50mm, R=350.1 Ω		
	Pulse current (mA)	MQE (J)	Pulse current (mA)	MQE (J)	Pulse current (mA)	MQE (J)	
70% I _c	84	7.42	84	7.42	85	7.59	
80% I _c	68	4.86	70	5.15	69	5.00	
90% I _c	58	3.54	59	3.66	59	3.66	

Conclusion

- At 77 K in self-field, the IR-3, CTD-101K, and MY750 impregnated REBCO coils can avoid performance degradation after repeated cooling tests. All the impregnated coils exhibited almost the same thermal and electrical stabilities. The IR-3 impregnated coil enabled well cooling performance between liquid nitrogen and the coil.
- Under 4.2 K with 5 T and 10 T background fields, the IR-3 impregnated coil showed superior electrical stability and also maintained its current-carrying capability.
- IR-3 exhibits high toughness, long-pot life, good mechanical strength, and acceptable radiation resistances. It has the potential as an impregnating material for HTS coils.

Postdoctoral Academic Exchange conference of Institute of High Energy Physics