Postdoctoral Academic Exchange conference of Institute of High Energy Physics

Study of charge density wave, superconductivity and topological in kagome materials

Jian-Guo Si, Lan-Ting Shi, Peng-Fei Liu and Bao-Tian Wang Spallation Neutron Source Science Center, Dongguan 523803, China 中国科学院高能物理研究所

igh Energy Physics, Chinese Academy of Sciences

E-mail: sijg@ihep.ac.cn

Abstract

Kagome metals AV_3Sb_5 (A = K, Rb, and Cs) have received intensive research interest due to the presence of charge density waves (CDWs), Z_2 topological surface states, and intriguing pressure-dependent superconductivity (SC). Using first-principles calculations, here we study the origin of the CDW order in CsV₃Sb₅ and its superconducting properties under pressure up to 45 GPa. We reveal that the momentumdependent electron phonon coupling (EPC) effect plays an important role in the formation of the CDW order. Upon compression, the movement of the van Hove singularity, which induces the change in the density of states at the Fermi level, as well as the redistribution of the EPC, can explain the experimentally observed double superconducting domes. The main contribution to the EPC is varied from in-plane vibrational modes in superconducting area I (2–15 GPa) to out-of-plane modes in superconducting area II (15–45 GPa). Materials prediction through elemental substituting using first-principles calculations is an effective way to guide experimenter to design more interesting materials. To explore more kagome compounds with the coexistence of superconductivity and nontrivial band structure, we predict some AV₃Sb₅-type materials, and then check their stability and investigate their electronic structures, superconductivity. The calculated results (8.02, 5.47, and 3.51 K for CsTi₃Te₅, CsZr₃Te₅ and CsHf₃Te₅, respectively) are clearly higher than those of AV₃Sb₅ family materials. the $CsZr_3Te_5$ and $CsHf_3Te_5$ are also predicted as Z_2 topological metals by calculating the topological invariant and surface states. The coexistence of superconduc x0002 tivity and nontrivial topological properties in CsZr₃Te₅ and CsHf₃Te₅ supply guidance for further theoretical and experimental works to seek novel topological superconductors, especially in materials with the AV₃Sb₅-prototype structure.

(a) Crystal structure of CsV_3Sb_5 . The Cs, V, and $Sb_1(Sb_2)$ atoms are presented as purple, orange, and azure (steel blue) balls, respectively. (b) The graphite net formed by Sb₂ atoms (top) and the two-dimensional kagome lattice formed by V atoms(bottom)

(a) Real and (b) imaginary parts of the electron susceptibility cross section in the plane of kz = 0.

The inset of (b) is the phonon linewidth γ of the lowest mode in the BZ.

Γ ΜΚ ΓΑ LΗ Α PhDOS Γ ΜΚ ΓΑ LΗ ΑΟ Phonon dispersions weighted by different atomic vibrational modes of (a) CsTi₃Te₅, (b) CsZr₃Te₅ and (c) CsHf₃Te₅. The right panels of (a)-(c) are the total (gray-shaded zone) and vibrational moderesolved (color lines) PhDOS. Phonon dispersions weighted by the magnitude of the EPC, the Eliashberg spectral function $\alpha^2 F(\omega)$, and the integrated strength of EPC $\lambda(\omega)$ for (d) CsTi₃Te₅, (e) $CsZr_{3}Te_{5}$, and (f) $CsHf_{3}Te_{5}$ are also presented.

Band structures without SOC effect of (a) CsTi₃Te₅, (b) CsZr₃Te₅, and (c) CsHf₃Te₅. The color lines indicate the bands crossing the Fermi level. The Dirac points and the van Hove singularities are illustrated by the light-blue circles and the purple arrows, respectively. (d) The top panel is the total DOS and the atomresolved DOSs. The middle and bottom panels are the orbital-resolved DOSs of Ti and Te, respectively. (e) and (f) are same as (d), but for CsZr₃Te₅ and CsHf₃Te₅, respectively

(left panel) The evolutions of T_c (red line) and EPC constant λ (blue line) of CsV₃Sb₅ as functions of pressure. (right panel) The integrated EPC distributions of CsV_3Sb_5 in the plane of qz = 0 under (a) 2, (b) 15, and (c) 45 GPa. The results for the plane qz = 0.5 are plotted in (d)–(f), respectively.

Conclusion

- The origin of the formation of the CDW order in CsV_3Sb_5 is the momentum-dependent electron phonon coupling (EPC) effect.
- ► The CsV₃Sb₅ is still a weak BCS superconductor, and the main contribution to the superconductivity is changed from the in-plane modes to the out-of-plane modes with increasing pressure.
- The nontrivial Z_2 nature maintains under pressure up to 45 GPa.
- The CsM_3Te_5 (*M*=Ti, Zr, Hf) are stable both in thermodynamics and dynamics.
- The superconductivity are evaluated Allen-Dynes-modified McMillan formula, and the T_C (8.02, 5.47, and 3.51 K for CsTi₃Te₅, CsZr₃Te₅ and CsHf₃Te₅, respectively) is higher than the AV₃Sb₅ family materials.
- $CsZr_3Te_5$ and $CsHf_3Te_5$ exhibit nontrivial band structures and could be classified as Z_2 topological metal.

[1] Jian-Guo Si, Wen-Jian Lu^{*}, Yu-Ping Sun, Peng-Fei Liu, and Bao-Tian Wang^{*}. Charge density wave and pressure-dependent superconductivity in the kagome metal CsV₃Sb₅: A first-principles study.

Phys. Rev. B **105**, 024517 (2022).

[2] Jian-Guo Si[#], Lan-Ting Shi[#], Peng-Fei Liu, Ping Zhang, and Bao-Tian Wang^{*}. Superconductivity and topological properties in kagome metals CsM₃Te₅ (M=Ti, Zr, Hf): A first-principles investigation

Phys. Rev. B under review.