

基于白光中子源的中子共振成像实验和模拟进展

报告人: 王丽娇

2022.6.28 高能所东莞研究部

- CSNS反角白光中子源的束流特点
- 中子共振成像的蒙卡模拟
- 基于快门CMOS相机的中子共振成像实验
- 基于含硼微通道板(B-MCP)的中子共振成像实验
- 下一步工作计划

- CSNS反角白光中子源的束流特点
- 中子共振成像的蒙卡模拟
- 基于快门CMOS相机的中子共振成像实验
- 基于含硼微通道板(B-MCP)的中子共振成像实验
- 下一步工作计划

• CSNS中反角白光中子源的主要参数

中子能区	1 eV – 200 MeV	
质子束能量和强度	1.6 GeV and 1.6×10 ¹³ (p/pulse)	
脉冲重复频率	25 Hz	
时间分辨率 (1 eV - 1 MeV)	$0.2\%\sim 0.9\%$	
中子注量率	~9.3×10 ⁶ n/cm ² /s (80 m) ~2.0×10 ⁷ n/cm ² /s (55 m)	
不同能区内中子的比例	0.53 (1 eV - 1 MeV) 0.40 (1 MeV – 20 MeV)	
	0.05 (20 MeV – 200 MeV)	

- 中子通量高,穿透能力强,有利于提高中子成像的质量和效率
- 中子能谱宽,可兼顾轻核素成份和中重核素成分分辨
- 目前可用设备:门控CMOS相机
- 发展中: 掺硼MCP(像素+TOF读出)

- CSNS反角白光中子源的束流特点
- 中子共振成像的蒙卡模拟
- 基于快门CMOS相机的中子共振成像实验
- 基于含硼微通道板(B-MCP)的中子共振成像实验
- 下一步工作计划

Time

Entries

Std Dev

92000

94000

96000

Mean

490104

746.7

8.897e+04

▶ 按照第一个束团的时间结构选择时间窗口

- ▶ 有效粒子: 能量区间在2.0~2.1 keV的中子

时间窗口(μs)	能量区间(keV)	有效粒子占比
87.3~89.4(时长约2.0 μs)	2.0~2.1	77.4%
87.9~88.9(时长约1.0 μs)	2.0~2.1	92.01%

▶ 按照两个束团的累加时间结构选择时间窗口

时间窗口(μs)	能量区间(keV)	有效粒子占比
88~90 (时长2.0 μs)	2.0~2.1	86.4%
88.5~90.5(时长约1.0 μs)	2.0~2.1	99.1%

▶ 重新选择时间窗口后,相同时长可提高有效粒子数占比。

- 探测器的构建
- ▶ 探测器采用掺杂6LiF的ZnS为闪烁屏,核反应原理如下:

```
n + 6Li \rightarrow 3H ( 2.72MeV ) + \alpha ( 2.05MeV )
```

- 中子核反应产生的次级带电粒子沉积4.78 MeV能量, 可以产生1.6e5个光学光子;
- ▶ ZnS闪烁屏:
- 厚度0.3mm; 6LiF: ZnS质量比是1:3
- Geant4中设置参数:光产额、时间衰减常数(200 ns)、光谱、 折射率(2.36),吸收长度(~0.5 mm)、介质折射率(空气1.0)、 表面属性(粗糙、光滑、表面反射率1.0)。

实验用的闪烁体是ZnS粉末状粘粘在AI片上

EJ-426HD2 1:2 1.39×10^{22} 0.34 0.48

厚度	打在样品 的中子数	发光 闪烁屏 的中 探测效 子数 率	闪烁屏	总的发光光 照 子数	照相机可 收集到的 光子数目	可收集到的	DETECTION PROPERTIES			
			探测效 率			收集到的	光子比例	Screen Type		EJ-426-0
							⁶ LiF:ZnS Mass	Ratio	1:3	
	(0 0250\/)							⁶ Li Density (at	oms/cm³)	8.81 × 10 ²
	(0.02500)	H					Theoretical	0.32 mm thick	0.23	
0.25mm	5000	917	18%	138545001	4473443	3.22%	N [™] Efficiency	0.50 mm thick	0.34	
0.3mm	5000	1084	22%	165384171	5012328	3.03%				
0.4mm	5000	1381	28%	213617983	5729691	2.68%				
0.5mm	5000	1661	33%	259082019	6218027	2.4%				
0.6mm	5000	1931	38%	301189504	6472483	2.15%				
0.7mm	5000	2176	43%	340729111	6532938	1.92%				
0.8mm	5000	2360	47%	370814426	6367266	1.71%				
0.9mm	5000	2584	52%	407158901	6282022	1.54%				
1.0mm	5000	2732	55%	430451906	5953006	1.38%				

▶ 闪烁体厚度越厚,光子转换效率越高,但在相机位置处,可收集到的光子比例逐渐下降。

- CSNS反角白光中子源的束流特点
- 中子共振成像的蒙卡模拟
- 基于快门CMOS相机的中子共振成像实验
- 基于含硼微通道板(B-MCP)的中子共振成像实验
- 下一步工作计划

➤ 低能区样品: Au、Ag、In、W

反应截面相对大小	延迟(ms)	时间窗宽度(ms)	能量区间
In	3968	4000	0.5eV~2.0eV
Ag	2371	140	5.0ev~5.6eV
Au	2510	135	4.5eV~5.0eV
W	1160	200	18.2eV~19.6eV
Au和Ag	2645	274	3.7eV~4.5eV
Public	3000	873	2.1eV~3.5eV

W

In

Ag

2μs: 118.52 120.52 122.52 124.52 126.52 128.52

▶ 122.52~124.52是理论计算的最优时间窗口,实验中同时拍摄了前后4个峰宽范围内的图像

实验样品 (数值代表厚度mm)

- ▶ 只能看到10mm的样品; 5mm和2mm的样品不可见;
- ▶ 共振区和非共振区的成像结果基本没有差异,无法共振检出Cu;
- ▶ 样品成像不清晰原因分析;
- 反应截面小;时间窗口短,中子探测效率低,共振区和非共振区的成像差 异较小,导致共振区和非共振区数据相减后可能被噪声淹没;

反应截面相对大小	延迟(μs)	时间窗宽度(μs)	能量区间
Al <cu<fe< td=""><td>600</td><td>5000</td><td>1~100eV</td></cu<fe<>	600	5000	1~100eV
Al <cu>Fe</cu>	40	85	2keV~20keV
Al~Cu~Fe	2.8	13.8	0.1MeV~2MeV

亮色为Fe

亮色为Cu

AI亮色差异最大

- CSNS反角白光中子源的束流特点
- 中子共振成像的蒙卡模拟
- 基于快门CMOS相机的中子共振成像实验
- 基于含硼微通道板(B-MCP)的中子共振成像实验
- 下一步工作计划

- ▶ 中子与核素(¹⁰B)发生核反应生成带电粒子;
- > 带电粒子进入孔道诱发二次电子产生;
- > 二次电子在孔道内部电场作用下进行倍增

若原初电离2-3电子、增益10⁵,阳极收集到电荷约数十fC

中子敏感MCP+XS阳极条

- > 128*128路电子学读出(等效上万像素)
- ▶ 阳极条宽0.5mm ,利用电荷重心法位置分辨好于百微米
- ▶ 响应时间:ns量级

• 测试条件与参数:

▶响应时间窗: T0信号之后6us至20ms

▶真空度:约为3e-5 Pa
▶MCP高压:2000V
▶开关孔径:12

▶准直器1孔径:15

▶准直器2孔径: 40

测试现场

• MCP电子学总共8块ADM板,每块板有32个通道,即共有256个通道(128个x通道和128个y通道);

- ➤ Au, W的反应截面大(>10⁴ barns), 中子吸收峰较明显(无样比有样的比值~3), 因此Au, W的共振检出效果较好;
- ➤ Cu, Fe的反应截面约300 barns, 中子吸收峰较明显(无样比有样的比值~2.3), 共振检出 基本可以检出各自的核素位置;
- ➤ AI的反应截面小(20~30 barns),中子吸收峰不明显(无样比有样的比值~1.8),共振检出效果不好;

▶ 下一步工作计划

- 在模拟中考虑闪烁体发光后,照相机的光收集过程对共振成像的影响;
- 基于Back-n中子能谱,将噪声考虑在内时,给出不同能区核素分析的能力(厚度)以 及不同核素清晰成像时照相机快门时间的选择;
- 对比模拟结果,分析寻找CMOS相机无法共振检出keV能区的原因;
- 测试改进后的MCP读出电子学,尝试不同厚度的中子共振成像;