Energy reconstruction method of cosmic ray for LHAASO-KM2A experiment

报告人:张恒英 (LHAASO项目组) 合作导师:何会海 研究员

2022年6月30日

Outline

Introduction to the LHAASO

• Selection of observed variables $(N_e \text{ and } N_\mu)$

Energy reconstruction method

- The all-particle energy spectrum exhibits two interesting structures from 10¹⁴ to 10¹⁸ eV, the "knee" and the "second knee". An explanation of these features is thought to be an important step in understanding the origin of the high-energy particles.
- A finite energy attained during the acceleration process leakage from the Galaxy
- Cosmic-ray components and hadronic interaction models
- A combination of electron and muon number is insensitive to the type of primary particle.

LHAASO(Large High Altitude Air Shower Observatory)

Ground-based air shower observatory under constructing at 4410 m above sea level in Daocheng, Kilometer square array (KM2A): electromagnetic detector (ED) and muon detector (MD) Water Cherenkov detector array (WCDA),

Wide-field-of-view Cherenkov/fluorescence telescope array (WFCTA)

KM2A experiment

The KM2A experiment can measure the electrons number and muon number of an air shower simultaneously with high precision for cosmic rays with energies in the knee region.

Selection of observed variables (N_e and N_μ)

The difference between the $N_e^{corsika}(N_{\mu}^{corsika})$ in corsika and the reconstructed $N_e(N_{\mu})$ after deducting in 15 m and 40 m of the shower core

The primary energy of cosmic ray is related to the atomic mass number A, the number of muons N_{μ} and the number of electrons N_{e}

5.5

6

log(E_/GeV)

6.5

5.5

6

log(E_/GeV)

6.5

7.5

7.5

Energy determination

Other quantity to reconstruct energy

Tibet-III air-shower array estimated the cosmic ray primary energy by the shower size N_{size}

The particle density at r = 50 m (denoted as ρ_{50}) evaluated using the lateral distribution function is used to estimate the γ -ray energy

As Heitler's EM model and Matthews's hadronic showers model introduced that the primary energy is finally divided between pions and electromagnetic particles in subshowers.

$$E_0 = E_e + E_h$$

one combined variable to reconstruct the cosmic ray energy weakly dependent on the components

$$N_{em} = N_e + 2.7 * N_{\mu}$$

- ✓ A combination of electron and muon number which will be shown to be insensitive to the type of primary particle.
- ✓ The cosmic ray all-particle energy spectrum between 10¹⁴ to 10¹⁷ eV using LHAASO-KM2A full array.

