

中國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

Inclusive Double Jpsi cross section measurement in CMS

Taozhe Yu, Hongbo Liao 30/6/2022 高能所博士后学术交流会

LHC and CMS

周长27km,跨越瑞士法国国境,总投资40亿美元
世界能量最高最大的加速器,质心系能量->7,8,13/14TeV(14x10¹²eV)

$$\eta = -\ln \tan \frac{\theta}{2}$$
 赝快度

Introduce

Measurement of Jpsi Pair cross section can validate perturbative quantum chromodynamics (QCD)

$c\bar{c} \rightarrow 3 \text{ g}$		64.1% ±1.0%
$c\overline{c} \rightarrow \gamma + 2 q$	g	8.8% ±0.5%
$c\bar{c} \to \gamma$		~25.4%
	$\gamma \rightarrow hadrons$	13.5% ±0.3%
	$\gamma \to e^{+} + e^{-}$	5.94% ±0.06%
	$\gamma \rightarrow \mu^+ + \mu^-$	5.93% ±0.06%
-		

> We choose Jpsi decay to two μ channel:

- The physics process is cleaner
- The lepton trigger is better to select signal
- CMS have the best technology to identity µ

Introduce

- Measure the J/ ψ pair production cross section using Run2(2016-2018) data in CMS
- Study the Fraction of DPS and SPS

SPS: gg→J/ψJ/ψ

DPS: gg→J/ψJ/ψ

J/ψ

J/ψ

\succ The J/ ψ pair production measurement has been done by LHCb, ATLAS and CMS

collaboration	Sqrt(s)	luminosity	Phase space	Result	paper
LHCb	7TeV	37.5pb ⁻¹	2<η<4.5 pt<10GeV	$5.1 \pm 1.0 \pm 1.1$ nb	link
LHCb	13TeV	279±11pb ⁻¹	2<η<4.5 pt<10GeV	$15.2 \pm 1.0 \pm 0.9$ nb	link
ATLAS	8TeV	11.4fb ⁻¹	η <2.1, pt>8.5GeV	15.6 \pm 1.3 \pm 1.2 \pm 0.2 \pm 0.3pb for η <105 13.5 \pm 1.3 \pm 1.1 \pm 0.2 \pm 0.3pb for 1.05< η <2.1	<u>link</u>
CMS	7TeV	4.7fb ⁻¹	pt>6.5GeV: η <1.2 pt>6.5→4.5GeV: 1.2< η <1.43 pt>4.5GeV: 1.43< η <2.2	1.49±0.07±0.13nb	<u>link</u>

Data and MC

Data	sample
2016	/Charmonium/Run2016B-02Apr2020_ver2-v1/NANOAOD /Charmonium/Run2016C-02Apr2020-v1/NANOAOD /Charmonium/Run2016D-02Apr2020-v1/NANOAOD /Charmonium/Run2016E-02Apr2020-v1/NANOAOD /Charmonium/Run2016F-02Apr2020-v1/NANOAOD /Charmonium/Run2016G-02Apr2020-v1/NANOAOD /Charmonium/Run2016H-02Apr2020-v1/NANOAOD
2017	/Charmonium/Run2017B-02Apr2020-v1/NANOAOD /Charmonium/Run2017C-02Apr2020-v1/NANOAOD /Charmonium/Run2017D-02Apr2020-v1/NANOAOD /Charmonium/Run2017E-02Apr2020-v1/NANOAOD /Charmonium/Run2017F-02Apr2020-v1/NANOAOD
2018	/Charmonium/Run2018A-02Apr2020-v1/NANOAOD /Charmonium/Run2018B-02Apr2020-v1/NANOAOD /Charmonium/Run2018C-02Apr2020-v1/NANOAOD /Charmonium/Run2018D-02Apr2020-v1/NANOAOD

background	sample
SPS	/SPS_ToJPsiJPsi_*-pythia8/RunII*NanoAODv7-*mcRun2*/NANOAODSIM
DPS	/DPS_ToJPsiJPsi_*-pythia8/RunII*NanoAODv7-*mcRun2*/NANOAODSIM

We just use 2016 dataset in this presentation

Object and event selection

Trigger
HLT_Dimuon0_Jpsi_Muon

≻Muon

- Standard Medium muon ID
- pT(muon)>=3.0GeV
- |η(muon)|<=2.4

≻J/ψ

The J/ψ was reconstructed by two muon

- $1 < |\eta(J/\psi)| < 2.2$ pT(J/ ψ) >6GeV $|\eta(J/\psi)| < 1$ pT(J/ ψ) >7GeV
- |m(dimuon) 3.096GeV|<0.3GeV

≻J/ψ Pair

- In one event, if the number of J/ ψ candidates is larger than 2 minimal | m(J/ ψ 1)-3.092GeV|² + | m(J/ ψ 2)-3.092GeV|² is used to select one combination
- J/ ψ pairs assigned randomly as J/ ψ 1 and J/ ψ 2
- $J/\psi1(muon12)$ and $J/\psi2(muon34)$ do not share a common muon

 \succ The process contribution to the signal region are:

- $J/\psi + J/\psi$ (signal)
- J/ψ + combinatorial
- Combinatorial + combinatorial

➢ Process modeling

- J/ ψ : using double-sided Crystal Ball (DSCB) function

The parament get from DPS and SPS fit

$$f_S(x;\vec{\theta}) = \begin{cases} \left(\frac{n_L}{|\alpha_L|}\right)^{n_L} \exp\left(\frac{-|\alpha_L|^2}{2}\right) \left(\frac{n_L}{|\alpha_L|} - |\alpha_L| - \frac{x-\mu}{\sigma}\right)^{-n_L}, & \text{for } \frac{x-\mu}{\sigma} \le -\alpha_L\\ \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right), & \text{for } -\alpha_L < \frac{x-\mu}{\sigma} < \alpha_R\\ \left(\frac{n_R}{|\alpha_R|}\right)^{n_R} \exp\left(\frac{-|\alpha_R|^2}{2}\right) \left(\frac{n_R}{|\alpha_R|} - |\alpha_R| + \frac{x-\mu}{\sigma}\right)^{-n_R}, & \text{for } \frac{x-\mu}{\sigma} \ge \alpha_R, \end{cases}$$

Combinatorial component: use the 2nd Chebyshev Polynomial

Modeling the J/ψ

- Use the double-sided Crystal Ball (DSCB) function to fit
- The shape are same in the SPS and DPS

Extraction of the number of $J/\psi J/\psi$ events

- We do the 2D fit invariance mass of muon12 and muon34 of data, and show the projections of the 2D fit
- The fit function is double-sided Crystal Ball (DSCB) function + 2nd Chebyshev Polynomial

Process	fraction	Uncorrected yield
J/ψ+J/ψ	0.631 ± 0.033	14176 ± 754
J/ψ+Comb.	0.327 ± 0.024	$7336\!\pm\!550$
Comb.+comb	0.042 ± 0.008	949±195

- The J/ ψ Pair fraction is f(J/ $\psi1$ J/ $\psi2)$ = 0.631 \pm 0.033
- The J/ ψ Pair events observed is 14176 \pm 754

The J/ ψ pair production cross section is measured in the fiducial region where both J/ ψ pt>6 and absolute rapidity below 2.2 (when absolute rapidity below 1, J/ ψ pt>7). The fiducial inclusive cross section can be calculate as follow formula:

$$\sigma_{fid} = \frac{N^{corr}}{\mathcal{LB}^2(J/\psi \rightarrow \mu\mu)} \qquad \mathcal{L} = 36.3 f b^{-1} \qquad \mathcal{B}^2(J/\psi \rightarrow \mu\mu) = 5.93 \pm 0.06\%$$

The N^{corr} can be obtained as:

 $N^{corr} = \left[\sum_{i}^{N^{obs}} \omega_{acc}^{i}(J/\psi_{1}) \omega_{acc}^{i}(J/\psi_{2}) \omega_{reco}^{i}(J/\psi_{1}) \omega_{reco}^{i}(J/\psi_{2}) \omega_{eff}^{i}(J/\psi_{1}) \omega_{eff}^{i}(J/\psi_{2}) \omega_{trig}^{i}(J/\psi_{1}, J/\psi_{2})\right]^{-1}$

- N^{obs} number of observed J/ ψ Pair events in fiducial region
- ω_{acc} the probability for a J/ψ (|η| <2.2 and decaying to a pair of muon) decay to two muon within the geometrical acceptance of detector(muon (|η| <2.4)
- ω_{reco} the probability for two muon from the J/ ψ which pass ω_{acc} can be reconstructed by PF algorithm as muon
- ω_{eff} the probability for two muon from the J/ ψ which pass the ω_{acc} and ω_{reco} can pass the event selection
- $\omega_{trigger}$ the probability of a event include a pair of J/ ψ which have pass the ω_{acc} , ω_{reco} and ω_{eff} can pass the trigger

The method is similar to that used by LHCb Collaboration

Acceptance probability

DEN = Number of J/ψ with $|\eta| < 2.2$ and decaying to a pair of muons NUM = DEN && muon $|\eta| < 2.4$

- The ω_{acc} was calculated in the J/ψ (pt, eta) plane
- DEN and NUM were calculated in generator level

Reconstruct probability

DEN = Number of J/ψ with $|\eta| < 2.2$ and decaying to a pair of muons with muon $|\eta| < 2.4$ (the NUM in ω_{acc}) NUM = DEN && Pair of muons reconstructed by PF algorithm as muon

- The ω_{reco} was calculated in the J/ψ (pt , eta) plane
- DEN and NUM were calculated in generator level

Selection efficiency

DEN = The NUM in ω_{reco} NUM = DEN && J/ψ and decayed muon pass the event selection

- The ω_{eff} was calculated in the J/ψ (pt, eta) plane
- DEN were calculated in generator level but NUM were calculated in reconstruct level

Events pass trigger probability

DEN = event included a pair of muons which pass the ω_{acc} , ω_{reco} and ω_{eff} NUM = DEN && event pass trigger

- The ω_{eff} was calculated in the $(J/\psi_1 \text{ pt}, J/\psi_2 \text{ pt})$ plane
- DEN and NUM were calculated in reconstruct level
- Since J/ ψ pairs assigned randomly, ω_{trig} should be symmetric for J/ψ_1 and J/ψ_2

Fit of corrected events

- The J/ ψ Pair fraction is 0.5731 \pm 0.0010
 - Number of J/ψ Pair events is 229234±501, the cross section is 1.80±0.02 nb

Process	Fraction	Corrected yield	
J/ψ+J/ψ	$0.5732 {\pm} 0.0010$	229234±501	
J/ψ+Comb.	0.3678 ± 0.0009	147101±372	
Comb.+comb	0.0590 ± 0.0004	23599±161	

中國科學院為能物記湖第所 Institute of High Energy Physics Chinese Academy of Sciences

Fraction of DPS

Extracting the DPS fraction strategy

- The SPS and DPS contribution can be separated because of their different kinematics
- The fiducial cross section is measured in individual bins of the rapidity difference or invariant mass

Modeling the $J/\psi(1)$

The individual bins of two J/ ψ invariance mass are [5, 10, 15, 20, 25, 30] GeV

SPS

- Use the double-sided Crystal Ball (DSCB) function to fit DPS and SPS shape in individual bins of two J/ψ invariance mass

Extracting the DPS fraction

The individual bins of two J/ ψ invariance mass are [5, 10, 15, 20, 25, 30] GeV

Modeling the $J/\psi(2)$

The individual bins of two J/ ψ rapidity difference are [0, 0.5, 1.0, 1.5, 2.0, 2.5]

- Use the double-sided Crystal Ball (DSCB) function to fit DPS and SPS shape in individual bins of two J/ ψ rapidity difference

Extracting the DPS fraction

The individual bins of two J/ ψ rapidity difference are [0, 0.5, 1.0, 1.5, 2.0, 2.5] GeV

- Use the CMS 2016 data measure the J/ ψ Pair production cross section in this phase space

η(J/ψ) < 1	pT(J/ψ) >7GeV	
$1 < \eta(J/\psi) < 2.2$	pT(J/ψ) >6GeV	

- The cross section is 1.80 ± 0.02 nb
- Use the SPS and DPS MC sample to do the J/ψ shape fit
- Study the fraction of DPS
 - $f_{DPS} = 89.0 \pm 11.0\%$ for m_{JpsiJpsi}
 - $f_{DPS} = 90.9 \pm 9.1\%$ for |Delta(Jpsi1, Jpsi2)|

≻Next step

- Use the full Run2 data, add the systematics
- Use the vertex information in event selection

中國科學院為能物昭為完備 Institute of High Energy Physics Chinese Academy of Sciences

backup

Data and MC

Data	sample
2016	/Charmonium/Run2016B-02Apr2020_ver2-v1/NANOAOD /Charmonium/Run2016C-02Apr2020-v1/NANOAOD /Charmonium/Run2016D-02Apr2020-v1/NANOAOD /Charmonium/Run2016E-02Apr2020-v1/NANOAOD /Charmonium/Run2016F-02Apr2020-v1/NANOAOD /Charmonium/Run2016G-02Apr2020-v1/NANOAOD /Charmonium/Run2016H-02Apr2020-v1/NANOAOD
2017	/Charmonium/Run2017B-02Apr2020-v1/NANOAOD /Charmonium/Run2017C-02Apr2020-v1/NANOAOD /Charmonium/Run2017D-02Apr2020-v1/NANOAOD /Charmonium/Run2017E-02Apr2020-v1/NANOAOD /Charmonium/Run2017F-02Apr2020-v1/NANOAOD
2018	/Charmonium/Run2018A-02Apr2020-v1/NANOAOD /Charmonium/Run2018B-02Apr2020-v1/NANOAOD /Charmonium/Run2018C-02Apr2020-v1/NANOAOD /Charmonium/Run2018D-02Apr2020-v1/NANOAOD

background	sample
SPS	/SPS_ToJPsiJPsi_*-pythia8/RunII*NanoAODv7-*mcRun2*/NANOAODSIM
DPS	/DPS_ToJPsiJPsi_*-pythia8/RunII*NanoAODv7-*mcRun2*/NANOAODSIM

We just use 2016 dataset in this presentation

Extraction of the number of $J/\psi J/\psi$ events

- We do the 1D fit separately for the invariance mass of muon12 and muon34 of data
- The fit function is double-sided Crystal Ball (DSCB) function + 2nd Chebyshev Polynomial
- From the fit we can get f(J/ ψ 1) = 0.796 \pm 0.009 and f(J/ ψ 2) = 0.798 \pm 0.013
- The J/ ψ Pair fraction is f(J/ ψ 1 J/ ψ 2) = f(J/ ψ 1) * f(J/ ψ 2) = 0.635 \pm 0.011
- The J/ ψ Pair events observed is 14324 \pm 284

Fit of corrected events

- The J/ ψ Pair fraction is f(J/ ψ 1 J/ ψ 2) = f(J/ ψ 1) * f(J/ ψ 2) = 0.574 \pm 0.004
- Number of J/ ψ Pair events is 230427 \pm 1626.59, the cross section is 1.80 \pm 0.02 nb

Use DPS private sample to do test

cut	N _{obs}	N _{corr} (DPS)	N _{corr} (SPS)	N _{corr} (Mix)
$ \eta(\mu) < 2.4$	2197	2201.1±115.3	2196.6±33.5	2197.1±31.3
$ p_T(\mu) > 3.5$	118	126.8±21.0	117.6±3.3	118.0±3.2
reco.(µ)	110	110.7±33.6	102.3±7.4	102.5±6.8
id.(μ)	104	108.6±43.0	100.3±9.9	100.4±9.1
vtx(μμ)	83	96.8±45.6	85.7±10.3	86.0±9.5
HLT	60	73.0±63.2	54.8±6.6	55.1±6.3
4 μ cut	52	56.3±61.3	48.0±6.4	48.2±6.1

- The DPS weights error are big
- Observed events and corrected events have good agreement

Use SPS private sample to do test

cut	N _{obs}	N _{corr} (DPS)	N _{corr} (SPS)	N _{corr} (Mix)
$ \eta(\mu) < 2.4$	394844	394514±40222	394696±6190	394717±5973
$ p_T(\mu) > 3.5$	75251	81903±18613	75619 ± 1974	75776 ± 1941
reco. (µ)	66964	75576±28854	68178±3924	68321±3779
<i>id</i> . (μ)	65756	74173±36255	66816±5188	66950±4983
vtx(μμ)	53772	65585±37371	57180±5349	57428±5146
HLT	40733	57159±59898	39898±3992	40079±3882
4 μ cut	36320	43496±56847	35053±3850	35201±3761

- The DPS weights error are big
- Observed events and corrected events have good agreement