重味重子物理研究的机遇

于福升

兰州大学

感谢常老师、孙老师、陈老师邀请!

河南师范大学, 2022.05.27

Outline

- Why baryon physics?
- Opportunities of baryon physics
- · Recent progresses: PQCD, LCSR
- Outlooks: LCDA
- Summary

B physics

Baryon physics?

Baryon physics

Baryon physics

- The visible matter of the Universe is mainly made of baryons.
- •Baryons play an important role in the evolution of the Universe, such as baryogenesis and big-bang nucleosythesis.

Baryon physics

- The visible matter of the Universe is mainly made of baryons.
- •Baryons play an important role in the evolution of the Universe, such as baryogenesis and big-bang nucleosythesis.
- However, our knowledge on the basic nucleon are even limited.
- •The mass and spin puzzles of proton are among the most important problems in physics.
- •Related to the inner structures and perturbative and nonperturbative QCD dynamics.

- Sakharov conditions for Baryogenesis:
 - 1) baryon number violation
 - 2) C and CP violation
 - 3) out of thermal equilibrium

- Sakharov conditions for Baryogenesis:
 - 1) baryon number violation
 - 2) C and CP violation
 - 3) out of thermal equilibrium
- CPV: SM < BAU. => new source of CPV, NP

- Sakharov conditions for Baryogenesis:
 - 1) baryon number violation
 - 2) C and CP violation
 - 3) out of thermal equilibrium
- CPV: SM < BAU. => new source of CPV, NP
- CPV is the most important issue in heavy flavor physics

- Sakharov conditions for Baryogenesis:
 - 1) baryon number violation
 - 2) C and CP violation
 - 3) out of thermal equilibrium
- CPV: SM < BAU. => new source of CPV, NP
- CPV is the most important issue in heavy flavor physics
- CPV well established in K, B and D mesons,
 but CPV never established in any baryon

- Sakharov conditions for Baryogenesis:
 - 1) baryon number violation
 - 2) C and CP violation
 - 3) out of thermal equilibrium
- CPV: SM < BAU. => new source of CPV, NP
- CPV is the most important issue in heavy flavor physics
- CPV well established in K, B and D mesons,
 but CPV never established in any baryon
- Key goal is to predict and search for baryon CPV

LHCb is a baryon factory !!

Large Production:
$$\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5$$
 $\frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$

Machine	CEPC (10 ¹² <i>Z</i>)	,	
Data taking	2030-2040	→ 2025	→ 2030
$\overline{B^+}$	6×10^{10}	3×10^{10}	3×10^{13}
B^0	6×10^{10}	3×10^{10}	3×10^{13}
B_s	2×10^{10}	3×10^8	8×10^{12}
B_c	6×10^7	_	6×10^{10}
b baryons	10 ¹⁰	_	10 ¹³

LHCb is a baryon factory !!

Large Production:
$$\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5 \longrightarrow \frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$$

Machine	CEPC (10 ¹² <i>Z</i>)	Belle II (50 ab ⁻¹ + 5 ab ⁻¹ at $\Upsilon(5S)$)	LHCb (50 fb ⁻¹)
Data taking	2030-2040	→ 2025	→ 2030
$\overline{B^+}$	6×10^{10}	3×10^{10}	3×10^{13}
B^0	6×10^{10}	3×10^{10}	3×10^{13}
B_s	2×10^{10}	3×10^8	8×10^{12}
B_c	6×10^7	_	6×10^{10}
b baryons	10 ¹⁰	_	10 ¹³

	2011	2012	2018	2023	2029	2035
LHCb	Ru	ın I	Run II	Run III	Run IV	Run V
Integrated luminosity	1 fb ⁻¹	3 fb ⁻¹	9 fb ⁻¹	23 fb ⁻¹	50 fb ⁻¹	300 fb ⁻¹

• LHCb is a baryon factory!!

Large Production:
$$\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5 \longrightarrow \frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$$

Machine	CEPC (10 ¹² <i>Z</i>)	Belle II (50 ab ⁻¹ + 5 ab ⁻¹ at $\Upsilon(5S)$)	LHCb (50 fb ⁻¹)
Data taking	2030-2040	→ 2025	→ 2030
$\overline{B^+}$	6×10^{10}	3×10^{10}	3×10^{13}
B^0	6×10^{10}	3×10^{10}	3×10^{13}
B_s	2×10^{10}	3×10^8	8×10^{12}
B_c	6×10^7	_	6×10^{10}
b baryons	10 ¹⁰	_	10 ¹³

	2011	2012	2018	2023	2029	2035
LHCb	Ru	ın I	Run II	Run III	Run IV	Run V
Integrated luminosity	1 fb ⁻¹	3 fb ⁻¹	9 fb ⁻¹	23 fb ⁻¹	50 fb ⁻¹	300 fb ⁻¹

BESIII and Belle II have fruitful results on charmed baryons and hyperons

LHCb is a baryon factory !!

- LHCb is a baryon factory !!
- •CPV evidence: 3σ in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ [LHCb, Nature Physics 2017]

- LHCb is a baryon factory !!
- •CPV evidence: 3σ in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ [LHCb, Nature Physics 2017]
- •Precision of baryon CPV measurements has reached to the order of 1% [LHCb, PLB2018]

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0)\%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0)\%$$

- LHCb is a baryon factory !!
- •CPV evidence: 3σ in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ [LHCb, Nature Physics 2017]
- Precision of baryon CPV measurements has reached to the order of 1% [LHCb, PLB2018]

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0)\%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0)\%$$

•CPV in some B-meson decays are as large as 10%:

$$A_{CP}(\overline{B}^0 \to \pi^+ \pi^-) = -0.32 \pm 0.04, \ A_{CP}(\overline{B}^0 \to K^- \pi^+) = -0.084 \pm 0.004, \ A_{CP}(\overline{B}^0 \to K^+ \pi^-) = +0.213 \pm 0.017$$

- LHCb is a baryon factory !!
- •CPV evidence: 3σ in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ [LHCb, Nature Physics 2017]
- •Precision of baryon CPV measurements has reached to the order of 1% [LHCb, PLB2018]

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0)\%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0)\%$$

•CPV in some B-meson decays are as large as 10%:

$$A_{CP}(\overline{B}^0 \to \pi^+ \pi^-) = -0.32 \pm 0.04, \ A_{CP}(\overline{B}^0 \to K^- \pi^+) = -0.084 \pm 0.004, \ A_{CP}(\overline{B}^0 \to K^+ \pi^-) = +0.213 \pm 0.017$$

·It can be expected that CPV in b-baryons might be observed soon !!

• Data driven: Precision of baryon CPV measurements has reached to the order of 1%

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0)\%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0)\%$$

Theoretical precision is required to be improved.

•Data driven: Precision of baryon CPV measurements has reached to the order of 1%

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0)\%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0)\%$$

- Theoretical precision is required to be improved.
- Baryons are very different from mesons!!

- Data driven: Precision of baryon CPV measurements has reached to the order of 1%
- $A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0) \%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0) \%$
- Theoretical precision is required to be improved.
- Baryons are very different from mesons!!
- •Helicities of baryons provide fruitful phenomenological observables.

 More information can be obtained from the angular distributions and polarizations.

 Few body for more observables.

Data driven: Precision of baryon CPV measurements has reached to the order of 1%

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0)\%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0)\%$$

- Theoretical precision is required to be improved.
- Baryons are very different from mesons!!
- •Helicities of baryons provide fruitful phenomenological observables.

 More information can be obtained from the angular distributions and polarizations.

 Few body for more observables.
- •Scalar diquark in $\Lambda_{b(c)}$ is simpler than spin 1/2 quark in B mesons in the heavy quark limit. Much less free parameters in $\Lambda_b \to \Lambda_c$ than $B \to D^{(*)}$ transitions [Bernlochner, Ligeti, Robinson, Sutcliffe, 2019]

Decay	$N_{\rm IW}$ at $\mathcal{O}(1)$	$N_{ m SIW}$ at $\mathcal{O}(\Lambda_{ m QCD}/m_{b,c})$	$N_{\rm SIW}$ at $\mathcal{O}(\Lambda_{\rm QCD}^2/m_c^2)$
$\Lambda_b \! o \! \Lambda_c \ell^- ar{m{v}}_\ell$	1	0	2
$B o D^* l v$	1	3	6

- Baryons are very different from mesons!!
- Factorization: Heavy-to-light form factor is factorizable at leading power in SCET.

No end-point singularity! [Wei Wang, 1112.0237] Taking $\Lambda_b o \Lambda$ as an example,

$$\xi_{\Lambda} = f_{\Lambda_b} \Phi_{\Lambda_b}(x_i) \otimes J(x_i, y_i) \otimes f_{\Lambda} \Phi_{\Lambda}(y_i)$$

·However, the leading-power result is one order of magnitude smaller than the total one

Leading power: $\xi_{\Lambda}(q^2=0)=-0.012^{+0.009}_{-0.023}$

Sum Rules [Feldman, Yip, 2011]: $\xi_{\Lambda}(q^2 = 0) = 0.38$

- •Two hard gluons suppressed by α_s^2 at the leading power. Compared to the soft contributions in the power corrections.
- More is different!!

- QCD studies on baryons are limited
- •Generalized factorization [Hsiao, Geng, 2015; Liu, Geng, 2021]: lost of non-factorizable contributions, such as W-exchange diagrams.
- •QCDF [Zhu, Ke, Wei, 2016, 2018]: based on diquark picture.
- •PQCD [Lu, Wang, Zou, Ali, Kramer, 2009]: only consider the leading twists of LCDAs.
- Currently, no complete QCD-inspired method for non-leptonic b-baryon decays

	EXP	GF	PQCD	QCDF
$Br(\Lambda_b \to p\pi)[\times 10^{-6}]$	4.3 ± 0.8	4.2+-0.7	4.66+2.22-1.81	4.11~4.57
$Br(\Lambda_b \to pK)[\times 10^{-6}]$	5.1 ± 0.9	4.8+-0.7	1.82+0.97-1.07	1.70~3.15
$A_{CP}(\Lambda_b \to p\pi)[\%]$	-2.5 ± 2.9	-3.9+-0.2	-32 +49 ₋₁	-3.74~-3.08
$A_{CP}(\Lambda_b \to pK)[\%]$	-2.5 ± 2.2	5.8+-0.2	-3 +25 ₋₄	8.1~11.4

大有可为!

Theoretical challenges

• Topological diagrams: more diagrams than mesons.

·More non-factorizable diagrams: C', E1, E2, B. They are non-negligible.

$$\frac{|C|}{|T|} \sim \frac{|C'|}{|C|} \sim \frac{|E_1|}{|C|} \sim \frac{|E_2|}{|C|} \sim O\left(\frac{\Lambda_{\text{QCD}}^h}{m_Q}\right)$$

Leibovich, Ligeti, Stewart, 2004

Theoretical progresses: PQCD

- PQCD successfully predicted correct CPV in B meson decays [Keum, Li, Sanda, 2000; Lu, Ukai, Yang, 2000].
- It is hopeful to predict correct CPV of b-baryons. W-exchange diagrams included.
- •The only prediction of b-baryon CPV by PQCD is given in [Lu, Wang, Zou, Ali, Kramer, 2009]
- ·However, the form factors are two orders of magnitude smaller than Lattice or sum rules

Lattice [35]
$$0.22 \pm 0.08$$
 PQCD [67] $2.2^{+0.8}_{-0.5} \times 10^{-3}$ H.n.Li, 1999; Lu, Wang, Zou, Ali, Kramer, 2009

- Only the leading twist of light-cone distribution amplitudes (LCDAs) were considered.
- •Recall that leading power is suppressed, so sub-leading power would be dominated.
- Consider higher twist LCDAs!!

$$\mathcal{A} = \Psi_{\Lambda_b}(x_i, b_i, \mu) \otimes H(x_i, b_i, x_i', b_i', \mu) \otimes \Psi_P(x_i', b_i', \mu)$$

Form Factors

	$f_{1}(0)$	$f_{2}(0)$	$g_{1}(0)$	$g_{2}(0)$
NRQM [76]	0.043			
heavy-LCSR [50]	$0.023^{+0.006}_{-0.005}$		$0.023^{+0.006}_{-0.005}$	
$ ext{light-LCSR-}\mathcal{A}$ [77]	$0.14^{+0.03}_{-0.03}$	$-0.054^{+0.016}_{-0.013}$	$0.14^{+0.03}_{-0.03}$	$-0.028^{+0.012}_{-0.009}$
light-LCSR- \mathcal{P} [77]	$0.12^{+0.03}_{-0.04}$	$-0.047^{+0.015}_{-0.013}$	$0.12^{+0.03}_{-0.03}$	$-0.016\substack{+0.007 \\ -0.005}$
QCD-light-LCSR [78]	0.018	-0.028	0.018	-0.028
HQET-light-LCSR [78]	-0.002	-0.015		
3-point QSR [49]	0.22	0.0071		
lattice [47]	0.22 ± 0.08	0.04 ± 0.12	0.12 ± 0.14	0.04 ± 0.31
PQCD [32]	$2.2^{+0.8}_{-0.5} \times 10^{-3}$			

- [32] C. D. Lu, Y. M. Wang, H. Zou, A. Ali and G. Kramer, "Anatomy of the pQCD approach to the baryonic decays $\Lambda_b \to p\pi, pK$," Phys. Rev. D **80**, 034011 (2009) [arXiv:0906.1479 [hep-ph]].
- [47] W. Detmold, C. Lehner and S. Meinel, " $\Lambda_b \to p\ell^-\bar{\nu}_\ell$ and $\Lambda_b \to \Lambda_c\ell^-\bar{\nu}_\ell$ form factors from lattice QCD with relativistic heavy quarks," Phys. Rev. D **92**,034503 (2015) [arXiv:1503.01421 [hep-lat]].
- [49] C. S. Huang, C. F. Qiao and H. G. Yan, "Decay $\Lambda_b \to p$ lepton anti-neutrino in QCD sum rules," Phys. Lett. B **437**, 403 (1998) [arXiv:hep-ph/9805452 [hep-ph]].

- [50] Y. M. Wang, Y. L. Shen and C. D. Lu, " $\Lambda_b \to p, \Lambda$ transition form factors from QCD light-cone sum rules," Phys. Rev. D **80**, 074012 (2009) [arXiv:0907.4008 [hep-ph]].
- [76] R. Mohanta, A. K. Giri and M. P. Khanna, "Charmless two-body hadronic decays of Λ_b baryon," Phys. Rev. D **63**, 074001 (2001) [arXiv:hep-ph/0006109 [hep-ph]].
- [77] A. Khodjamirian, C. Klein, T. Mannel and Y. M. Wang, "Form factors and strong couplings of heavy baryons from QCD light-cone sum rules," JHEP **09**, 106 (2011) [arXiv:1108.2971 [hep-ph]].
- [78] M. q. Huang and D. W. Wang, "Light cone QCD sum rules for the semileptonic decay $\Lambda_b \to pl\bar{\nu}$," Phys. Rev. D **69**, 094003 (2004) [arXiv:hep-ph/0401094 [hep-ph]].

	$f_{1}(0)$	$f_2(0)$	$g_{1}(0)$	$g_{2}(0)$
NRQM [76]	0.043			
heavy-LCSR[50]	$0.023^{+0.006}_{-0.005}$		$0.023^{+0.006}_{-0.005}$	
$ ext{light-LCSR-}\mathcal{A}$ [77]	$0.14^{+0.03}_{-0.03}$	$-0.054^{+0.016}_{-0.013}$	$0.14^{+0.03}_{-0.03}$	$-0.028^{+0.012}_{-0.009}$
light-LCSR- \mathcal{P} [77]	$0.12^{+0.03}_{-0.04}$	$-0.047^{+0.015}_{-0.013}$	$0.12^{+0.03}_{-0.03}$	$-0.016^{+0.007}_{-0.005}$
QCD-light-LCSR [78]	0.018	-0.028	0.018	-0.028
HQET-light-LCSR [78]	-0.002	-0.015		
3-point QSR [49]	0.22	0.0071		
lattice [47]	0.22 ± 0.08	0.04 ± 0.12	0.12 ± 0.14	0.04 ± 0.31
PQCD [32]	$2.2^{+0.8}_{-0.5} \times 10^{-3}$			
this work (exponential)	0.27 ± 0.12	0.008 ± 0.005	0.31 ± 0.16	0.014 ± 0.008
this work (free parton)	0.24 ± 0.10	0.007 ± 0.004	0.27 ± 0.13	0.014 ± 0.010

J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2202.04804

Higher twist LCDAs contribute to the correct order of form factors.

proton

	twist-3	twist-4	twist-5	twist-6	total
exponential					
$\overline{\text{twist-2}}$	0.0007	-0.00007	-0.0005	-0.000003	0.0001
${ m twist} ext{-}3^{+-}$	-0.0001	0.002	0.0004	-0.000004	0.002
$ ext{twist-3}^{-+}$	-0.0002	0.0060	0.000004	0.00007	0.006
twist-4	0.01	0.00009	0.25	0.0000007	0.26
total	0.01	0.008	0.25	0.00007	$0.27 \pm 0.09 \pm 0.07$
free parton					
$\overline{\text{twist-2}}$	0.0006	-0.00007	-0.0005	-0.000002	0.0001
$ ext{twist-3}^{+-}$	-0.0001	0.002	0.0003	-0.00001	0.002
$twist-3^{-+}$	-0.0002	0.006	0.00003	0.00005	0.005
twist-4	0.009	0.0005	0.22	~ 0	0.23
total	0.009	0.008	0.22	0.00004	$0.24 \pm 0.07 \pm 0.06$

- •High-twist LCDA dominant: twist-5 of proton + twist-4 of Λ_b
- Consistent with the power analysis by SCET.

J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2202.04804

Power-suppressed contribution incredibly surpasses the leading-power one

h_{ij}	twist-3	twist-4
twist-2	0	$r\psi_2 4(x_1-1)x_3(-V_2+V_3+A_2+A_3+T_3+T_7+S_1-P_1)$
twist-3 ⁺⁻	$\psi_3^{+-}2x_3(-x_1)(V_1+A_1)$	$r\psi_3^{+-}2x_3(V_3-A_3)$
cwist-3^{-+}	0	$r\psi_3^{-+}2x_3(2T_2+T_3-T_7+S_1+P_1)$
twist-4	$\psi_4 8x_3 (-T_1)$	$r\psi_4 4(x_1-1)(1-x_2')(V_2-V_3-A_2-A_3)$
h_{ij}	twist-5	twist-6
twist-2	$r^2\psi_2 4x_3(-V_4+V_5-A_4-A-5)$	$r^3\psi_2 8(1-x_1)(1-x_2')T_6$
$wist-3^{+-}$	$r^2\psi_3^{+-}2(x_1-1)(1-x_2')(T_4+2T_5-T_8+S_2+P_2)$	0
cwist-3^{-+}	$r^2\psi_0^{-+} + 2(x_1-1)(1-x_2')(V_4-A_4-T_8)$	$r^3\psi_3^{-+}2(1-x_2')(-V_6-A_6)$
twist-4	$r^2\psi_4 4(1-x_2)(V_4-V_5+A_4+A_5+T_4+T_8+S_2-P_2)$	$\overline{0}$

$$x_1 \to 1, x_{2,3} \to 0$$

J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2202.04804

• It can be expected that PQCD can predict CPV of b-baryons

J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2205.xxxxx

- ·Heavy-to-light form factors have been systematically studied in the light-cone sum rules (LCSR)
 - ✓ Next-to-leading order corrections [Y.M.Wang, Y.L.Shen, 2016]
 - ✓ LCDAs of heavy baryons [Bell, Feldman, Y.M.Wang, Yip, 2013]
 - $\Lambda_b \to p, N^*$ transitions [K.S.Huang, W.Liu, Y.L.Shen, FSY, 2205.xxxxx]

$$\Pi_{\mu,a}(p,q) = \frac{1}{m_{p}^{2} - p^{2}} \sum_{s'} \left\langle 0 \left| \eta_{i}(0) \right| p\left(p,s'\right) \right\rangle \left\langle p\left(p,s'\right) \left| j_{\mu,a}(0) \right| \Lambda_{b}(p+q) \right\rangle$$

$$+ \frac{1}{m_{N^{*}}^{2} - p^{2}} \sum_{s'} \left\langle 0 \left| \eta_{i}(0) \right| N^{*}\left(p,s'\right) \right\rangle \left\langle N^{*}\left(p,s'\right) \left| j_{\mu,a}(0) \right| \Lambda_{b}(p+q) \right\rangle + \dots$$

- Test three interpolating currents
- Test five models of Λ_b LCDAs

$$\eta_{\text{IO}}(x) = \varepsilon^{abc} \left[u^{aT}(x) C \gamma^{\rho} u^{b}(x) \right] \gamma_{5} \gamma_{\rho} d^{c}(x)$$

$$\eta_{\text{TE}}(x) = \varepsilon^{abc} \left[u^{aT}(x) C \sigma^{\rho\sigma} u^{b}(x) \right] \gamma_{5} \sigma_{\rho\sigma} d^{c}(x)$$

$$\eta_{\text{LP}}(x) = \varepsilon^{abc} \left[u^{aT}(x) C \not n u^{b}(x) \right] \gamma_{5} \not n d^{c}(x)$$

		f_1	f_2	g_1	g_2
	Ioffe current				
	Gegenbauer-1	0.53 ± 0.39	-0.12 ± 0.099	0.53 ± 0.39	-0.12 ± 0.099
	Gegenbauer-2	0.50 ± 0.077	-0.11 ± 0.021	0.50 ± 0.077	-0.11 ± 0.021
A	QCDSR	0.13 ± 0.023	-0.023 ± 0.004	0.13 ± 0.023	-0.023 ± 0.004
$\Lambda_b \to p$	Exponential	0.14 ± 0.087	-0.026 ± 0.017	0.14 ± 0.087	-0.026 ± 0.017
C	Free-parton	0.17 ± 0.11	-0.031 ± 0.022	0.17 ± 0.11	-0.031 ± 0.022
-	Tensor current				
	Gegenbauer-1	0.37 ± 0.34	-0.070 ± 0.058	0.37 ± 0.34	-0.070 ± 0.058
	Gegenbauer-2	0.36 ± 0.079	-0.068 ± 0.015	0.36 ± 0.079	-0.068 ± 0.015
	QCDSR	0.11 ± 0.023	-0.023 ± 0.005	0.11 ± 0.023	-0.023 ± 0.005
	Exponential	0.12 ± 0.071	-0.024 ± 0.014	0.12 ± 0.071	-0.024 ± 0.014
	Free-parton	0.16 ± 0.10	-0.033 ± 0.021	0.16 ± 0.10	-0.033 ± 0.021
-	LP current				
	Gegenbauer-1	0.29 ± 0.062	-0.050 ± 0.011	0.29 ± 0.062	-0.050 ± 0.011
	Gegenbauer-2	0.31 ± 0.071	-0.050 ± 0.013	0.31 ± 0.071	-0.050 ± 0.013
	QCDSR	0.29 ± 0.061	-0.050 ± 0.010	0.29 ± 0.061	-0.050 ± 0.010
	Exponential	0.27 ± 0.11	-0.045 ± 0.017	0.27 ± 0.11	-0.045 ± 0.017
_	Free-parton	0.38 ± 0.15	-0.063 ± 0.024	0.38 ± 0.15	-0.063 ± 0.024
-	heavy-LCSR[13]	$0.023^{+0.006}_{-0.005}$	$-0.039^{+0.009}_{-0.009}$	$0.023^{+0.006}_{-0.005}$	$-0.039^{+0.009}_{-0.009}$
	light-LCSR- $\mathcal{A}[14]$	$0.14^{+0.03}_{-0.03}$	$-0.054^{+0.016}_{-0.013}$	$0.14^{+0.03}_{-0.03}$	$-0.028^{+0.012}_{-0.009}$
	light-LCSR- $\mathcal{P}[14]$	$0.12^{+0.03}_{-0.04}$	$-0.047^{+0.015}_{-0.013}$	$0.12^{+0.03}_{-0.03}$	$-0.016^{+0.007}_{-0.005}$
	$\operatorname{QCD-light-LCSR}[16]$	0.018	-0.028	0.018	-0.028
	HQET-light-LCSR[16]	-0.002	-0.015	-0.002	-0.015
	PQCD-Exponential[32]	0.27 ± 0.12	0.008 ± 0.005	0.31 ± 0.13	0.014 ± 0.010
	PQCD-Free-parton[32]	0.24 ± 0.10	0.007 ± 0.004	0.27 ± 0.16	0.014 ± 0.008
	CCQM[26]	0.080	-0.036	0.007	-0.001
	RQM[27]	0.169	-0.050	0.196	-0.0002
	$\mathrm{LFQM}[28]$	0.1131	-0.0356	0.1112	-0.0097
	$\operatorname{LQCD}[29]$	0.22 ± 0.08	0.04 ± 0.12	0.12 ± 0.14	0.04 ± 0.31
=					

- Ioffe and tensor currents are preferred for proton
- ${\bf \cdot} \Lambda_b$ LCDA models of QCDSR, exponential, and free-parton are preferred.
- $\Lambda_b \to N^*$ are helpful to distinguish them.

[K.S.Huang, W.Liu, Y.L.Shen, FSY, 2205.xxxxx]

-		F_1	F_2	G_1	G_2
-	Ioffe Current	<u> </u>			
	Gegenbauer-1	0.23 ± 0.57	0.002 ± 0.12	0.23 ± 0.57	0.002 ± 0.12
	Gegenbauer-2	0.20 ± 0.15	0.009 ± 0.029	0.20 ± 0.15	0.009 ± 0.029
$\Lambda_b \to N^*$	QCDSR	0.015 ± 0.021	0.019 ± 0.005	0.015 ± 0.021	0.019 ± 0.005
	Exponential	0.029 ± 0.031	0.017 ± 0.008	0.029 ± 0.031	0.017 ± 0.008
_	Free-parton	0.006 ± 0.026	0.028 ± 0.015	0.006 ± 0.026	0.028 ± 0.015
	Tensor Current				
	${\it Gegenbauer-1}$	0.32 ± 0.29	-0.11 ± 0.087	0.32 ± 0.29	-0.11 ± 0.087
	${\bf Gegenbauer-2}$	0.32 ± 0.069	-0.10 ± 0.023	0.32 ± 0.069	-0.10 ± 0.023
	QCDSR	0.10 ± 0.019	-0.035 ± 0.007	0.10 ± 0.019	-0.035 ± 0.007
	Exponential	0.10 ± 0.062	-0.036 ± 0.021	0.10 ± 0.062	-0.036 ± 0.021
	Free-parton	0.14 ± 0.089	-0.050 ± 0.032	0.14 ± 0.089	-0.050 ± 0.032
	LP Current				
	${\it Gegenbauer-1}$	1.16 ± 0.22	-0.34 ± 0.065	1.16 ± 0.22	-0.34 ± 0.065
	${\it Gegenbauer-2}$	1.22 ± 0.24	-0.34 ± 0.075	1.22 ± 0.24	-0.34 ± 0.075
	QCDSR	1.16 ± 0.22	-0.34 ± 0.064	1.16 ± 0.22	-0.34 ± 0.064
	Exponential	1.07 ± 0.42	-0.30 ± 0.11	1.07 ± 0.42	-0.30 ± 0.11
_	Free-parton	1.48 ± 0.60	-0.43 ± 0.16	1.48 ± 0.60	-0.43 ± 0.16
-	LCSR(1)[30]	-0.562 ± 0.015	0.451 ± 0.0133	0.523 ± 0.014	-0.454 ± 0.013
	LCSR(2)[30]	-0.185 ± 0.005	0.184 ± 0.006	0.143 ± 0.004	-0.093 ± 0.003
	LCSR-1[31]	-0.297 ± 0.080	-0.213 ± 0.064	-0.028 ± 0.084	0.106 ± 0.031
	LCSR-2[31]	-0.202 ± 0.060	-0.0640 ± 0.0018	-0.144 ± 0.043	0.062 ± 0.002
P∩ =					

- •Two-body hadronic decays of $\Lambda_b \to p\pi$, pK are studied firstly in LCSRs [H.Y.Jiang, Khodjamirian, FSY, S.Cheng, in preparation]
- •LCSR has been studied in $B\to\pi\pi$ [Khodjamirian, 2001, 2003, 2005] and applied to predict CPV of D meson decays [Khodjamirian, 2017]
- It overcomes the difficulty of calculation on W-exchange diagrams in QCDF.

Three-point correlator scheme

Two-point correlator scheme

- Two-body hadronic decays of b-baryons are studied firstly in LCSRs
- [H.Y.Jiang, Khodjamirian, FSY, S.Cheng, in preparation]
- The full framework has been well established.
- Two-point correlators can be easily calculated, to cross check the 3-point results, and to be extended to NLO corrections.
- The preliminary numerical results are consistent with data.

Topology	3pt scheme	2pt scheme
$T(10^{-9})$	(-1.57i, -1.51i)	(-1.79i, -1.80i)
$C'(10^{-9})$	(0.20i, 0.20i)	(0.26i, 0.25i)

channel	$\Lambda_b \to p\pi$	$\Lambda_b \to pK$		
topology	T,C',E_2,B	T,E_2		
	$P_C, P_{C'}$	P_C		
$BR (10^{-6})$	5.94	6.50		
BR (PDG) (10^{-6})	4.5 ± 0.8	5.4 ± 1.0		
A_{CP}	-0.018	-0.001		
A_{CP} (PDG)	-0.025 ± 0.029	-0.025 ± 0.022		

Outlooks: LCDAs

- Light-cone distribution amplitudes are fundamental structures of hadrons.
- LCDAs are non-perturbative quantities, thus difficult for predictions.
- LCDAs of b-baryons and light baryons are much less known
- They are however important inputs in the calculations.
- So they dominate the theoretical uncertainties.
- The errors in each method are large.
- The differences between different methods are large.
- Theoretical efforts are urgently required.

Light-Cone Distribution Amplitudes: Λ_b

$$(Y_{\Lambda_b})_{\alpha\beta\gamma}(x_i,\mu) = \frac{1}{8\sqrt{2}N_c} \Big\{ f_{\Lambda_b}^{(1)}(\mu) [M_1(x_2,x_3)\gamma_5 C^T]_{\gamma\beta} + f_{\Lambda_b}^{(2)}(\mu) [M_2(x_2,x_3)\gamma_5 C^T]_{\gamma\beta} \Big\} [\Lambda_b(p)]_{\alpha}$$

$$\begin{split} M_1(x_2, x_3) &= \frac{\cancel{h}\cancel{h}}{4} \psi_3^{+-}(x_2, x_3) + \frac{\cancel{h}\cancel{h}}{4} \psi_3^{-+}(x_2, x_3), \\ M_2(x_2, x_3) &= \frac{\cancel{h}}{\sqrt{2}} \psi_2(x_2, x_3) + \frac{\cancel{h}}{\sqrt{2}} \psi_4(x_2, x_3), \end{split}$$

$$(Y_{\Lambda_b})_{\alpha\beta\gamma}(x_i,\mu) = \frac{f'_{\Lambda_b}}{8\sqrt{2}N_c}[(\not p + m_{\Lambda_b})\gamma_5 C]_{\beta\gamma}[\Lambda_b(p)]_{\alpha}\psi(x_i,\mu),$$

$$\psi(x_i) = Nx_1x_2x_3 \ exp\left(-\frac{m_{\Lambda_b}^2}{2\beta^2x_1} - \frac{m_l^2}{2\beta^2x_2} - \frac{m_l^2}{2\beta^2x_3}\right),$$

Light-Cone Distribution Amplitudes: Λ_b

Model-I: Gegenbauer-1

$$\begin{split} \psi_2(x_2,x_3) = & m_{\Lambda_b}^4 x_2 x_3 \left[\frac{1}{\epsilon_0^4} e^{-m_{\Lambda_b}(x_2 + x_3)/\epsilon_0} + a_2 C_2^{3/2} (\frac{x_2 - x_3}{x_2 + x_3}) \frac{1}{\epsilon_1^4} e^{-m_{\Lambda_b}(x_2 + x_3)/\epsilon_1} \right] \\ \psi_3^{+-}(x_2,x_3) = & \frac{2m_{\Lambda_b}^3 x_2}{\epsilon_3^3} e^{-m_{\Lambda_b}(x_2 + x_3)/\epsilon_3}, \\ \psi_3^{-+}(x_2,x_3) = & \frac{2m_{\Lambda_b}^3 x_3}{\epsilon_3^3} e^{-m_{\Lambda_b}(x_2 + x_3)/\epsilon_3}, \\ \psi_4(x_2,x_3) = & \frac{5}{\mathcal{N}} m_{\Lambda_b}^2 \int_{m_{\Lambda_b}(x_2 + x_3)/2}^{s_0} ds e^{-s/\tau} (s - m_{\Lambda_b}(x_2 + x_3)/2)^3, \end{split}$$

Ball, Braun, Gardi, 0804.2424, PLB 2008

with the Gegenbauer moment $a_2 = 0.333^{0.250}_{-0.333}$, the Gegenbauer polynomial $C_2^{3/2}(x) = 3(5x^2-1)/2$, the parameters $\epsilon_0 = 200^{+130}_{-60}$ MeV, $\epsilon_1 = 650^{+650}_{-300}$ MeV and $\epsilon_3 = 230 \pm 60$

 $\epsilon_2^{(2)} = 0.551_{-0.356}^{+\infty} \text{ GeV}, \ \epsilon_2^{(3)} = 0.055_{-0.02}^{+0.01} \text{ GeV}, \ \epsilon_2^{(4)} = 0.262_{-0.132}^{+0.116} \text{ GeV} \ \text{and} \ \eta_3^{(3)} =$

Model-II: Gegenbauer-2

$$\psi_{2}(x_{2}, x_{3}) = m_{\Lambda_{b}}^{4} x_{2} x_{3} \frac{a_{2}^{(2)}}{\epsilon_{2}^{(2)4}} C_{2}^{3/2} \left(\frac{x_{2} - x_{3}}{x_{2} + x_{3}}\right) e^{-m_{\Lambda_{b}}/(x_{2} + x_{3})/\epsilon_{2}^{(2)}},$$

$$\psi_{3}^{+-}(x_{2}, x_{3}) = m_{\Lambda_{b}}^{3} (x_{2} + x_{3}) \left[\frac{a_{2}^{(3)}}{\epsilon_{2}^{(3)3}} C_{2}^{1/2} \left(\frac{x_{2} - x_{3}}{x_{2} + x_{3}}\right) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\epsilon_{2}^{(3)}} + \frac{b_{3}^{(3)}}{\eta_{3}^{(3)3}} C_{2}^{1/2} \left(\frac{x_{2} - x_{3}}{x_{2} + x_{3}}\right) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\eta_{3}^{(3)}} \right]$$

$$\psi_{3}^{-+}(x_{2}, x_{3}) = m_{\Lambda_{b}}^{3} (x_{2} + x_{3}) \left[\frac{a_{2}^{(3)}}{\epsilon_{2}^{(3)3}} C_{2}^{1/2} \left(\frac{x_{2} - x_{3}}{x_{2} + x_{3}}\right) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\epsilon_{2}^{(3)}} - \frac{b_{3}^{(3)}}{\eta_{3}^{(3)3}} C_{2}^{1/2} \left(\frac{x_{2} - x_{3}}{x_{2} + x_{3}}\right) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\eta_{3}^{(3)}} \right]$$

$$\psi_{4}(x_{2}, x_{3}) = m_{\Lambda_{b}}^{2} \frac{a_{2}^{(4)}}{\epsilon_{2}^{(4)}} C_{2}^{1/2} \left(\frac{x_{2} - x_{3}}{x_{2} + x_{3}}\right) e^{-m_{\Lambda_{b}}(x_{2} + x_{3})/\epsilon_{2}^{(4)}}, \qquad a_{2}^{(2)} = 0.391 \pm 0.279, \ a_{2}^{(3)} = -0.161_{-0.108}^{+0.108}, \ a_{2}^{(4)} = -0.541_{-0.09}^{+0.173}, \ b_{3}^{(3)} = -0.24_{-0.147}^{+0.24},$$

 $0.633 \pm 0.099 \text{ GeV}.$

Ali, Hambrock, Parkhomenko, 2012

Light-Cone Distribution Amplitudes: Λ_b

Model-III: Exponential

$$\psi_{2}(x_{2}, x_{3}) = \frac{x_{2}x_{3}}{\omega_{0}^{4}} m_{\Lambda_{b}}^{4} e^{-(x_{2}+x_{3})m_{\Lambda_{b}}/\omega_{0}},$$

$$\psi_{3}^{+-}(x_{2}, x_{3}) = \frac{2x_{2}}{\omega_{0}^{3}} m_{\Lambda_{b}}^{3} e^{-(x_{2}+x_{3})m_{\Lambda_{b}}/\omega_{0}},$$

$$\psi_{3}^{-+}(x_{2}, x_{3}) = \frac{2x_{3}}{\omega_{0}^{3}} m_{\Lambda_{b}}^{3} e^{-(x_{2}+x_{3})m_{\Lambda_{b}}/\omega_{0}},$$

$$\psi_{4}(x_{2}, x_{3}) = \frac{1}{\omega_{0}^{2}} m_{\Lambda_{b}}^{2} e^{-(x_{2}+x_{3})m_{\Lambda_{b}}/\omega_{0}},$$

 $\omega_0 = 0.4 \; \mathrm{GeV}$

Model-IV: Free Parton

$$\psi_{2}(x_{2}, x_{3}) = \frac{15x_{2}x_{3}m_{\Lambda_{b}}^{4}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})}{4\bar{\Lambda}^{5}}\Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})$$

$$\psi_{3}^{+-}(x_{2}, x_{3}) = \frac{15x_{2}m_{\Lambda_{b}}^{3}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})^{2}}{4\bar{\Lambda}^{5}}\Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}),$$

$$\psi_{3}^{-+}(x_{2}, x_{3}) = \frac{15x_{3}m_{\Lambda_{b}}^{3}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})^{2}}{4\bar{\Lambda}^{5}}\Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}),$$

$$\psi_{4}(x_{2}, x_{3}) = \frac{5m_{\Lambda_{b}}^{2}(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}})^{3}}{8\bar{\Lambda}^{5}}\Theta(2\bar{\Lambda} - x_{2}m_{\Lambda_{b}} - x_{3}m_{\Lambda_{b}}),$$

 $\bar{\Lambda} \equiv (m_{\Lambda_b} - m_b)/2 \approx 0.8 \; \mathrm{GeV}$

Light-Cone Distribution Amplitudes: proton

$$\begin{split} (\overline{Y}_P)_{\alpha\beta\gamma}(x_i',\mu) &= \frac{1}{8\sqrt{2}N_c} \Big\{ -S_1 m_p C_{\beta\alpha}(\bar{N}^+\gamma_5)_{\gamma} - S_2 m_p C_{\beta\alpha}(\bar{N}^-\gamma_5)_{\gamma} - P_1 m_p (C\gamma_5)_{\beta\alpha}\bar{N}_{\gamma}^+ \\ &- P_2 m_p (C\gamma_5)_{\beta\alpha}\bar{N}_{\gamma}^- + V_1 (CP)_{\beta\alpha}(\bar{N}^+\gamma_5)_{\gamma} + V_2 (CP)_{\beta\alpha}(\bar{N}^-\gamma_5)_{\gamma} \\ &+ V_3 \frac{m_p}{2} (C\gamma_{\perp})_{\beta\alpha}(\bar{N}^+\gamma_5\gamma^{\perp})_{\gamma} + V_4 \frac{m_p}{2} (C\gamma_{\perp})_{\beta\alpha}(\bar{N}^-\gamma_5\gamma^{\perp})_{\gamma} + V_5 \frac{m_p^2}{2P_z}(C\not z)_{\beta\alpha}(\bar{N}^+\gamma_5)_{\gamma} \\ &+ V_6 \frac{m_p^2}{2P_z} (C\not z)_{\beta\alpha}(\bar{N}^-\gamma_5)_{\gamma} - A_1 (C\gamma_5P)_{\beta\alpha}(\bar{N}^+)_{\gamma} - A_2 (C\gamma_5P)_{\beta\alpha}(\bar{N}^-)_{\gamma} \\ &- A_3 \frac{m_p}{2} (C\gamma_5\gamma_{\perp})_{\beta\alpha}(\bar{N}^+\gamma^{\perp})_{\gamma} + A_4 \frac{m_p}{2} (C\gamma_5\gamma_{\perp})_{\beta\alpha}(\bar{N}^-\gamma^{\perp})_{\gamma} - A_5 \frac{m_p^2}{2P_z}(C\gamma_5\not z)_{\beta\alpha}(\bar{N}^+)_{\gamma} \\ &- A_6 \frac{m_p^2}{2P_z} (C\gamma_5\not z)_{\beta\alpha}(\bar{N}^-)_{\gamma} - T_1 (iC\sigma_{\perp P})_{\beta\alpha}(\bar{N}^+\gamma_5\gamma^{\perp})_{\gamma} - T_2 (iC\sigma_{\perp P})_{\beta\alpha}(\bar{N}^-\gamma_5\gamma^{\perp})_{\gamma} \\ &- T_3 \frac{m_p}{P_z} (iC\sigma_{Pz})_{\beta\alpha}(\bar{N}^+\gamma_5)_{\gamma} - T_4 \frac{m_p}{P_z} (iC\sigma_{zP})_{\beta\alpha}(\bar{N}^-\gamma_5)_{\gamma} - T_5 \frac{m_p^2}{2P_z} (iC\sigma_{\perp z})_{\beta\alpha}(\bar{N}^+\gamma_5\gamma^{\perp})_{\gamma} \\ &- T_6 \frac{m_p^2}{2P_z} (iC\sigma_{\perp z})_{\beta\alpha}(\bar{N}^-\gamma_5\gamma^{\perp})_{\gamma} + T_7 \frac{m_p}{2} (C\sigma_{\perp \perp'})_{\beta\alpha}(\bar{N}^+\gamma_5\sigma^{\perp \perp'})_{\gamma} \\ &+ T_8 \frac{m_p}{2} (C\sigma_{\perp \perp'})_{\beta\alpha}(\bar{N}^-\gamma_5\sigma^{\perp \perp'})_{\gamma} \Big\}, \end{split}$$

Braun, Fries, Mahnke, Stein, hep-ph/0007279, NPB 2000

V_1	V_2,V_3	V_4,V_5	V_6
A_1	A_2,A_3	A_4,A_5	A_6
T_1	T_2,T_3,T_7	T_4,T_5,T_8	T_{6}
	S_1	S_2	
	P_1	P_2	
	A_1	$egin{array}{cccc} A_1 & A_2, A_3 \ T_1 & T_2, T_3, T_7 \ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Light-Cone Distribution Amplitudes: proton

• Twist-3 LCDAs

$$\begin{split} V_1(x_i) = &120x_1x_2x_3[\phi_3^0 + \phi_3^+(1 - 3x_3)], \\ A_1(x_i) = &120x_1x_2x_3(x_2 - x_1)\phi_3^-, \\ T_1(x_i) = &120x_1x_2x_3[\phi_3^0 + \frac{1}{2}(\phi_3^- - \phi_3^+)(1 - 3x_3)]. \end{split}$$

• Twist-4 LCDAs

$$\begin{split} V_2(x_i) = & 24x_1x_2[\phi_4^0 + \phi_4^+(1-5x_3)], \\ V_3(x_i) = & 12x_3[\psi_4^0(1-x_3) + \psi_4^-(x_1^2 + x_2^2 - x_3(1-x_3)) + \psi_4^+(1-x_3-10x_1x_2)], \\ A_2(x_i) = & 24x_1x_2(x_2-x_1)\phi_4^-, \\ A_3(x_i) = & 12x_3(x_2-x_1)[(psi_4^0 + \psi_4^+) + \psi_4^-(1-2x_3)], \\ T_2(x_i) = & 24x_1x_2[\xi_4^0 + \xi_4^+(1-5x_3)], \\ T_3(x_i) = & 6x_3[(\xi_4^0 + \phi_4^0 + \psi_4^0)(1-x_3) + (\xi_4^- + \phi_4^- - \psi_4^-)(x_1^2 + x_2^2 - x_3(1-x_3)) \\ & + (\xi_4^+ + \phi_4^+ + \psi_4^+)(1-x_3-10x_1x_2)], \\ T_7(x_i) = & 6x_3[(-\xi_4^0 + \phi_4^0 + \psi_4^0)(1-x_3) + (-\xi_4^- + \phi_4^- - \psi_4^-)(x_1^2 + x_2^2 - x_3(1-x_3)) \\ & + (-\xi_4^+ + \phi_4^+ + \psi_4^+)(1-x_3-10x_1x_2)], \\ S_1(x_i) = & 6x_3(x_2-x_1)[(\xi_4^0 + \phi_4^0 + \psi_4^0 + \xi_4^+ + \phi_4^+ + \psi_4^+) + (\xi_4^- + \phi_4^- - \psi_4^-)(1-2x_3)], \\ P_1(x_i) = & 6x_3(x_2-x_1)[(\xi_4^0 - \phi_4^0 - \psi_4^0 + \xi_4^+ - \phi_4^+ - \psi_4^+) + (\xi_4^- - \phi_4^- + \psi_4^-)(1-2x_3)]. \end{split}$$

• Twist-5 LCDAs

$$\begin{split} V_4(x_i) = & 3[\psi_5^0(1-x_3) + \psi_5^-(2x_1x_2 - x_3(1-x_3)) + \psi_5^+(1-x_3 - 2(x_1^2 + x_2^2))], \\ V_5(x_i) = & 6x_3[\phi_5^0 + \phi_5^+(1-2x_3)], \\ A_4(x_i) = & 3(x_2-x_1)[-\psi_5^0 + \psi_5^-x_3 + \psi_5^+(1-2x_3)], \\ A_5(x_i) = & 6x_3(x_2-x_1)\phi_5^-, \\ T_4(x_i) = & \frac{3}{2}[(\xi_5^0 + \psi_5^0 + \phi_5^0)(1-x_3) + (\xi_5^- + \phi_5^- - \psi_5^-)(2x_1x_2 - x_3(1-x_3)) \\ & + (\xi_5^+ + \phi_5^+ + \psi_5^+)(1-x_3 - 2(x_1^2 + x_2^2))], \\ T_5(x_i) = & 6x_3[\xi_5^0 + \xi_5^+(1-2x_3)], \\ T_8(x_i) = & \frac{3}{2}[(\psi_5^0 + \phi_5^0 - \xi_5^0)(1-x_3) + (\phi_5^- - \phi_5^- - \xi_5^-)(2x_1x_2 - x_3(1-x_3)) \\ & + (\phi_5^+ + \phi_5^+ - \xi_5^+)(\mu)(1-x_3 - 2(x_1^2 + x_2^2))], \\ S_2(x_i) = & \frac{3}{2}(x_2 - x_1)[-(\psi_5^0 + \phi_5^0 + \xi_5^0) + (\xi_5^- + \phi_5^- - \psi_5^0)x_3 + (\xi_5^+ + \phi_5^+ + \psi_5^0)(1-2x_3)], \\ P_2(x_i) = & \frac{3}{2}(x_2 - x_1)[(\psi_5^0 + \phi_5^0 - \xi_5^0) + (\xi_5^- - \phi_5^- + \psi_5^0)x_3 + (\xi_5^+ - \phi_5^+ - \psi_5^0)(1-2x_3)]. \end{split}$$

• Twist-6 LCDAs

$$V_6(x_i) = 2[\phi_6^0 + \phi_6^+(1 - 3x_3)],$$

$$A_6(x_i) = 2(x_2 - x_1)\phi_6^-,$$

$$T_6(x_i) = 2[\phi_6^0 + \frac{1}{2}(\phi_6^- - \phi_6^+)(1 - 3x_3)],$$

Light-Cone Distribution Amplitudes: proton

Table 2: Parameters in the proton LCDAs in units of 10^{-2} GeV² [73]. The accuracy of those parameters without uncertainties is of order of 50%.

	ϕ_i^0	ϕ_i^-	ϕ_i^+	ψ_i^0	ψ_i^-	ψ_i^+	ξ_i^0	ξ_i^-	$\overline{\xi_i^+}$
twist-3 $(i=3)$	0.53 ± 0.05	2.11	0.57						
twist-4 $(i=4)$	-1.08 ± 0.47	3.22	2.12	1.61 ± 0.47	-6.13	0.99	0.85 ± 0.31	2.79	0.56
twist-5 $(i=5)$	-1.08 ± 0.47	-2.01	1.42	$1.61\pm.047$	-0.98	-0.99	0.85 ± 0.31	-0.95	0.46
twist-6 $(i=6)$	0.53 ± 0.05	3.09	-0.25						

Parameters of LCDAs of proton

Model	Method	$f_N \cdot 10^3$ Gev ²	$\lambda_1 \cdot 10^3$ Gev ²	$\lambda_2 \cdot 10^3$ Gev ²	A_1^u	V_1^d	f_1^u	f_1^d	f_2^d	Ref.
	QCDSR	5.0(5)	-27(9)	54(19)						
ASY		-	-	-	0	1/3	1/10	3/10	4/15	
CZ	QCDSR	5.3(5)	-	-	0.47	0.22	-	-	-	[1]
KS	QCDSR	5.1(3)	-	-	0.34	0.24	-	-	-	[2]
COZ	QCDSR	5.0(3)	-	-	0.39	0.23	-	-	-	[3]
SB	QCDSR	-	-	-	0.38	0.24	-	-	-	[4]
BK	PQCD	6.64	-	-	0.08	0.31	-	-	-	[5]
BLW	QCDSR	-	-	-	0.38(15)	0.23(3)	0.07(5)	0.40(20)	0.22(5)	[6]
BLW	LCSR (LO)	-	-	-	0.13	0.30	0.09	0.33	0.25	[6]
ABO1	LCSR (NLO)	-	-	-	0.11	0.30	0.11	0.27	-	[7]
ABO2	LCSR (NLO)				0.11	0.30	0.11	0.29	-	[7]
LAT09	LATTICE	3.23 (63)	-35.57 (65)	70.02 (13)	0.19 (2)	0.20 (1)	-	-	-	[8]
LAT14	LATTICE	3.07 (36)	-38.77 (18)	77.64 (37)	0.07 (4)	0.31 (2)	-	-	-	[9]
LAT19	LATTICE	3.54 (6)	-44.9 (42)	93.4 (48)	0.30 (32)	0.192 (22)	-	-	-	[10]

Reference

- [1] V. Chernyak and I. Zhitnitsky, Nucl. Phys. B246, 52 (1984).
- [2] I. King and C. T. Sachrajda, Nucl. Phys. B279, 785 (1987).
- [3] V. Chernyak, A. Ogloblin, and I. Zhitnitsky, Z.Phys. C42, 569 (1989).
- [4] N. Stefanis and M. Bergmann, Phys.Rev. D47, 3685 (1993), hep-ph/9211250.
- [5] J. Bolz and P. Kroll, Z.Phys. A356, 327 (1996), hepph/9603289.
- [6] V. Braun, A. Lenz, and M. Wittmann, Phys.Rev. D73, 094019 (2006), hep-ph/0604050
- [7] I. Anikin, V. Braun, and N. Offen, Phys.Rev. D88, 114021 (2013), 1310.1375.
- [8] V. M. Braun et al. (QCDSF Collaboration), Phys.Rev. D79, 034504 (2009), 0811.2712.
- [9] V.M. Braun, S. Collins, B. Gl"aßle, M. G"ockeler, A. Sch"afer, R.W. Schiel, W. S"oldner, A. Sternbeck, P. Wein, Phys. Rev. D89, 094511 (2014)
- [10] Gunnar S. Bali et al. Light-cone distribution amplitudes of octet baryons from lattice QCD. *Eur. Phys. J. A*, 55(7):116, 2019.

Outlooks: others

- Non-leptonic decays:
 - other approaches except for PQCD and LCSR.
- Form factors:
 - more models, higher excited states.
- FCNC processes:
 - higher excited states.
- CPV observables, polarizations and angular distributions.

Summary

• Baryon physics is an opportunity of heavy flavor physics at the current stage.

My dream on baryon physics

