Theory of Resonant Depolarization

Summary of what I've learned from a paper on RD of VEPP-4M

Zhe Duan

Accelerator Physics Group Accelerator Division, IHEP

April 26, 2022

Resonant depolarization

• A depolarizer is a device with an external oscillating longitudinal or radial magnetic field of frequency f_d . Its frequency can be scanned so that

$$\nu_0 \pm \frac{f_d}{f_0} = k + \epsilon(t)$$

 f_0 is the revolution frequency of the storage ring, ν_0 is the closed orbit spin tune, k is an integer. ϵ is the detuning from the "forced" spin resonances

$$\nu_0 \pm \frac{f_d}{f_0} = k \tag{1}$$

- When one of the spin resonances Eq.(1) is crossed under certain conditions, depolarization can be observed.
- The exact resonant value f_d can be measured and the fractional part of ν_0 is deduced.
- ν₀ = a < γ > +Δν, the systematic error Δν is a function of energy and field perturbations.

The depolarization after a single crossing of a spin resonance is

$$S_{y} = S_{y0}[2\exp(-\frac{\pi|\omega_{k}|^{2}}{2\alpha_{0}}) - 1]$$
⁽²⁾

with the acceleration rate $\alpha_0 = \dot{\epsilon}\omega_0$, $\omega_0 = 2\pi f_0$, ω_k is the spin resonance strength.

- Depolarization occurs when $\dot{\epsilon} \sim |\omega_k|^2 \omega_0$.
- Rapid crossing $(\dot{\epsilon} \gg |\omega_k|^2 \omega_0)$ leads to a tiny polarization loss $\frac{\pi \omega_k |^2 \omega_0}{\dot{\epsilon}}$.
- Adiabatic crossing $(\dot{\epsilon} \ll |\omega_k|^2 \omega_0)$ leads to a spin flip.

Resonance crossing and radiative diffusion

Theory: successive uncorrelated fast crossings

Assume the depolarizer frequency f_d is close to a spin resonance, if there is an additional modulation of ϵ with a low frequency f_m and an amplitude ϵ_{max} , the spin resonance could be periodically crossed with a rate $2\epsilon_{max}f_m$.

- Each of such crossing can be fast, so that only a tiny depolarization occurs.
- Successive crossings can be uncorrelated due to quantum fluctuation, if

$$\nu_0^2 \ge \tau_p f_m^3 / f_0^2 \tag{3}$$

• Then these consecutive perturbations can accumulate diffusively, and lead to a depolarization time τ_d

$$\tau_d \approx \frac{\epsilon_{\max}}{|\omega_k|^2 \omega_0} \tag{4}$$

• The fast crossing condition is $f_m \tau_d \gg 1$.

$ \begin{array}{ll} \sigma_{\delta} & \text{rms relative energy spread} & \sigma_{\delta} = \frac{<\Delta E^{2}>}{E_{0}} \\ \nu_{z}, \lambda_{z} & \text{synchrotron tune, long. damping decrement} & \lambda_{z} = T_{\text{rev}}/\tau_{z} \\ \nu_{0} & \text{closed orbit spin tune} & \nu_{0} = a\gamma_{0} \\ \sigma_{\nu} & \text{instantaneous spread of spin frequency} & \sigma_{\nu} = \nu_{0}\sigma_{\delta} \\ \epsilon_{\nu} & \text{intrinsic linewidth of spin frequency} & \frac{\epsilon_{\nu}}{\nu_{0}} \approx \sqrt{\left(\frac{\alpha_{c}\sigma_{\delta}^{2}}{2}\right)^{2} + < B''\sigma_{x}^{2} > } \end{array} $	Symbol	Parameter	Expression
$\frac{\sigma_{\nu}}{\Delta z}$	$ \sigma_{\delta} \\ \nu_{z}, \lambda_{z} \\ \nu_{0} \\ \sigma_{\nu} \\ \epsilon_{\nu} \\ \epsilon_{\nu} $	rms relative energy spread synchrotron tune, long. damping decrement closed orbit spin tune instantaneous spread of spin frequency intrinsic linewidth of spin frequency diffusive lindwidth of spin frequency	$\sigma_{\delta} = \frac{\langle \Delta E^2 \rangle}{E_0}$ $\lambda_z = T_{rev} / \tau_z$ $\nu_0 = a \gamma_0$ $\sigma_{\nu} = \nu_0 \sigma_{\delta}$ $\frac{\epsilon_{\nu}}{\nu_0} \approx \sqrt{\left(\frac{\alpha_c \sigma_{\delta}^2}{2}\right)^2 + \langle B'' \sigma_x^2 \rangle^2}$

- Typically, $\sigma_{\nu} \gg \epsilon_{\nu}$.
- A forced RD process takes a much longer time compared to orbital oscillations.
- The intrinsic linewidth corresponds to average over orbital oscillations.
- The error of RD is much less than σ_{ν} , but is limited by $\sqrt{\epsilon_{\nu}^2 + \epsilon_{\text{diff}}^2}$.

Key depolarizer parameters

Symbol	Parameter	Expression
ϕ	orbital rotation angle	$\phi = BI/B ho$
$ \omega_k $	spin resonance strength	$ \omega_k = u F^ u rac{\phi}{2\pi}$ for TEM kicker
f _d	depolarizer scan frequency	$ u_0\pm f_d/f_0=k+\epsilon(t)$
δf_d	spectral linewidth	$\delta f_d pprox \sqrt{df_d/dt}$

Table: Key depolarizer parameters

- For a longitudinal field depolarizer, $|\omega_k| = \frac{\phi}{4\pi}$.
- For a standing wave transverse field depolarizer, $|\omega_k| = \nu |F^{\nu}| \frac{\phi}{4\pi}$.
- δ_{f_d} is determined by the thermal noise of its signal generator under stationary condition.
- At uniform frequency tuning during scanning, additional broadening occurs as a consequence of the uncertainty relation, and usually is the main contribution to δ_{f_d} as shown in the table.

Depolarization in the noise band of depolarizer

- In fact, ω_k due to the depolarizer is generally very weak, while the frequency scan is relatively fast, a monotonic scan of the depolarizer frequency to cross a spin resonance is in the "fast crossing" domain.
- When the depolarizer frequency is very close to the spin resonance, the successive uncorrelated fast crossings occur due to the noise band δf_d of the depolarizer, and could lead to "in-band depolarization".
- This requires $\max \left\{ |\epsilon|, \epsilon_{\nu} \right\} < \frac{\delta f_d}{f_0}$ and $\nu_0^2 \ge \tau_p (\delta f_d)^3 / f_0^2$.
- The depolarization time is then

$$\tau_d \approx \frac{\delta f_d}{4\pi |\omega_k|^2 f_0^2} \tag{5}$$

• "In-band depolarization" is possible if each resonance crossing in the noise band is fast: $(\delta f_d/f_0)^2 \gg |\omega_k|^2$.

Modulation resonances

- Modulation resonances $\nu + l\nu_{mod} \pm \nu_d = k$ are "solitary" when $\sigma_{\nu} \ll \nu_{\gamma}$.
- Crossings of spin resonances due to synchrotron oscillations are "correlated" when $\nu_0^2 \ll \tau_p \nu_\gamma^3/f_0$.
- Under these conditions, resonant depolarization might occur near each modulation resonance.
- The ratio of τ_d at 1st modulation (I=1) and the main resonance (I=0) is

$$\frac{\tau_d^{(1)}}{\tau_d^{(0)}} = \frac{I_0(A)}{I_1(A)} \tag{6}$$

• Synchrotron oscillations: $\nu(\theta) = \nu_0 + \Delta_\gamma \cos(\nu_\gamma \theta)$, $A = \frac{\sigma_\nu^2}{\nu_\gamma^2}$.

• Regular field pulsations: $\nu(\theta) = \nu_0 + \Delta_B \cos(\nu_B \theta)$, $\Delta_B = \nu \sqrt{\langle (\frac{\Delta B}{B})^2 \rangle}$, $A = \frac{\Delta_B^2}{\nu_{\Phi}^2}$.

Depolarization band

- Depolarization band: the difference bettween the depolarization frequencies during scan "up" and "down".
- Initially, a larger depolarization band could be due to depolarization at modulation resonances.
- This ambiguity can be suppressed by
 - Synchrotron sideband: scan synchrotron tune to check the resonance position.
 - Regular field pulsation: reduce the level of power supply ripple, at 50 Hz and harmonics.
- Then the depolarization band is determined by
 - frequency scan step
 - depolarization linewidth
 - the energy drift between two successive calibrations
 - at a minimum, the spin linewidth

RD operation modes

RD operation modes differ in the ratio of the depolarizer depolarizer and the spin linewidth.

- "CLUB": fast preliminary energy calibration with an accuracy of about 10^{-5} .
- " J/ψ ": most precise calibrations (10⁻⁶) in narrow resonance peaks.
- "CPT": precise comparison of the spin frequencies of electron and positron.

Tupe	40.	dE/dt	δ_d	$ au_d$	ΔE	Line width	
rype	w_k	$\rm keV/c$	$\rm keV$	s	$\rm keV$	depolarizer	spin
"CLUB"	$\sim 10^{-6}$	10	2.3	~ 1	10	$ \land $	
J/ψ	5×10^{-7}	0.3	0.4	~ 1	2	$ \land $	
"CPT"	4×10^{-8}	0.005	0.05	~ 100	0.002		

Table 2. Three main RD operation modes with the same depolarizer plates (Depolarizer 3).

- In the table, $\delta_d = \frac{E}{a\gamma} \frac{\sqrt{\dot{f}_d}}{f_0}$, i.e., $\delta_d[keV] = 1000 \sqrt{\frac{dE/dt[keV/s]*0.4406}{f_0}}$
- The intrinsic spin linewidth is ${\sim}1$ keV (2 Hz).

Experiment setup and typical measurements

- The depolarizer scan rate and amplitude are set up to provide a depolarization time of about 1 s.
- The typical time for collecting statistics at one point is 20 s.
- The jumps occur between two measurement points, which ensures the accuracy of the absolute energy value at a level of 10⁻⁶.

Comparison between different machines

Collider	$E,{\rm GeV}$	σ_{ν}	ν_{γ}	τ_p,\min	f_0, kHz	$\sigma_{\nu}/\nu_{\gamma}$	Г	$\epsilon_{ u}$	$\lambda_{\gamma}/2\pi$, rad ⁻¹	$\varepsilon_{\mathrm{diff}}$
VEPP-4M	1.85	0.0015	~ 0.01	4200	820	0.15	$5 imes 10^{-5}$	$\sim 4\times 10^{-6}$	1.8×10^{-6}	$2.7 imes 10^{-7}$
	4.73	0.0098	0.015	45		pprox 0.7	~ 0.01	$\sim 10^{-4}$	3.0×10^{-5}	2.1×10^{-5}
LEP	45.6	0.061	0.083	300	11	0.73	0.054	_	$4.7 imes 10^{-4}$	$3.4 imes 10^{-4}$
FCC-ee	45.6	0.039	0.0250	15000	3	1.56	0.155	$\sim 7.3\times 10^{-5}$	1.25×10^{-4}	2×10^{-4}

Table 3. Comparison of parameters affecting the spin spectrum in different colliders

- CEPC-Z, $\sigma_{\nu} = 0.041, \nu_{\gamma} = 0.035, \lambda_{\gamma}/2\pi = 1.36e 4$, $\epsilon_{\text{diff}} = 1.6e 4$
- CEPC-W, $\sigma_{
 u} = 0.127, \nu_{\gamma} = 0.061, \lambda_{\gamma}/2\pi = 7.13e 4$, $\epsilon_{\text{diff}} = 1.5e 3$

If naively consider this limits the accuracy of beam energy measurement by RD, then this corresponds to 70 keV @ Z, 660 keV @ W.