Recent Theoretical Progress on Heavy Quark A personal perspective

Qin Qin

Huazhong University of Science and Technology

全国第19届重味物理和CP破坏研讨会 HFCPV－2022

9－11 Dec．2022，Nanjing

Contents

- Recent progress on CP violation

Novel observables, complementary to direct CPV

- Recent progress on QCD factorization

Singularity regularization \& nonperturbative inputs by Lattice

- Other highlights

Recent Progress on CP violation

Milestones of CP violation

- Mixing-induced CPV observed in Kaon decays
[Christenson, Cronin, Fitch, Turlay, '64]
- The Kobayashi-Maskawa mechanism
[Kobayashi, Maskawa, '73]
- Direct CPV discovered in B meson decays
[BaBar \& Belle, '01]
- Direct CPV confirmed in D meson decays
[LHCb, '19]
- What's next? CPV in the baryon sector.

Experimental opportunities for baryonic CPV

- LHCb is a baryon factory!

$$
f_{\Lambda_{b}} / f_{u, d} \sim 0.5
$$

Machine	CEPC $\left(10^{12} Z\right)$	Belle II (50 ab $+5 \mathrm{ab}^{-1}$ at $\left.\Upsilon(5 S)\right)$	LHCb $\left(50 \mathrm{fb}^{-1}\right)$
Data taking	$2030-2040$	$\rightarrow 2025$	$\rightarrow 2030$
B^{+}	6×10^{10}	3×10^{10}	3×10^{13}
B^{0}	6×10^{10}	3×10^{10}	3×10^{13}
B_{s}	2×10^{10}	3×10^{8}	8×10^{12}
B_{c}	6×10^{7}	-	6×10^{10}
b baryons	10^{10}	-	10^{13}

- BESIII and Belle II have fruitful results for charmed baryons and hyperons
- First baryonic CPV evidence: 3.3σ in $\Lambda_{b}^{0} \rightarrow p \pi^{-} \pi^{+} \pi^{-} \quad$ [LHCb, Nature Physics 2017]
- Experimental precision reached 1\%
[LHCb, PLB 2018]

$$
A_{C P}\left(\Lambda_{b}^{0} \rightarrow p \pi^{-}\right)=(-3.5 \pm 1.7 \pm 2.0) \%, A_{C P}\left(\Lambda_{b}^{0} \rightarrow p K^{-}\right)=(-2.0 \pm 1.3 \pm 1.0) \%
$$

- Direct CPV in some B meson decays can reach 10\%.

$$
A_{C P}\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)=-0.32 \pm 0.04, \quad{ }_{5}^{A}{ }_{C P}\left(\bar{B}_{s}^{0} \rightarrow K^{+} \pi^{-}\right)=+0.213 \pm 0.017
$$

Theoretical consideration for baryonic CPV

- For baryonic CPV, what observables to be measured?
- Is direct CP asymmetry the correct observable?

$$
A_{C P}=\frac{|A|^{2}-|\bar{A}|^{2}}{|A|^{2}+|\bar{A}|^{2}}, \quad \begin{aligned}
& A=A_{1} e^{i \phi_{1}} e^{i \delta_{1}}+A_{2} e^{i \phi_{2}} e^{i \delta_{2}}=A_{1} e^{i \phi_{1}} e^{i \delta_{1}}\left(1+r e^{i \phi} e^{i \delta}\right) \\
& \bar{A}=A_{1} e^{-i \phi_{1}} e^{i \delta_{1}}+A_{2} e^{-i \phi_{2}} e^{i \delta_{2}}=A_{1} e^{-i \phi_{1}} e^{i \delta_{1}}\left(1+r e^{-i \phi} e^{i \delta}\right)
\end{aligned}
$$

Requirements:

1. r is large
2. weak phase ϕ is large
3. strong phase δ is large

Far beyond contro!!

- Alternative observables to satisfy or relax the requirements?

Partial wave CP asymmetry

- In multi-body $(n \geq 3)$ decays $H \rightarrow R \ldots \rightarrow h_{1} h_{2} \ldots$, decay width can be expanded with the Legendre's polynomials, and the partial wave CP asymmetry is hereby defined

$$
\overline{|\mathcal{M}|^{2}} \propto \sum_{j=0}^{\infty} w^{(j)} P_{j}\left(c_{\theta_{1}^{*}}\right), \quad \therefore \quad A_{C P}^{(j)} \equiv \frac{w^{(j)}-\bar{w}^{(j)}}{w^{(j)}+\bar{w}^{(j)}}
$$

θ_{1}^{*} : angle between h_{1} and H in the $h_{1} h_{2}$ rest frame

- It has at least the following advantages:

1. Combine information in each bins in Dalitz plots
2. Different resonances R may induce interferences with large relative strong phases

See Zhen-Hua Zhang's talk
[Zhang, Guo, et al, 2103.11335, 2208.13411, 2209.13196]

Polarization induced observables

- Polarizations/helicities of baryons provide fruitful observables.
- Lee-Yang parameters: α, β, γ

$$
A\left(\Lambda^{0} \rightarrow p \pi\right)=\bar{u}_{p}\left(S+P \gamma_{5}\right) u_{\Lambda}
$$

General Partial Wave Analysis of the
Decay of a Hyperon of Spin $\frac{1}{2}$
T. D. Lee* and C. N. Yang

Institute for Advanced Study, Princeton, New Jersey
(Received October 22, 1957)

Theoretically, they are expressed by partial wave amplitudes (helicity amplitudes $h_{ \pm}=S \pm P$) as:

$$
\alpha=\frac{2 \operatorname{Re}\left(S^{*} P\right)}{|S|^{2}+|P|^{2}}, \quad \beta=\frac{2 \operatorname{Im}\left(S^{*} P\right)}{|S|^{2}+|P|^{2}}, \quad \gamma=\frac{|S|^{2}-|P|^{2}}{|S|^{2}+|P|^{2}}
$$

$$
\frac{d \Gamma}{d \cos \theta} \propto 1+\alpha \cos \theta
$$

Experimentally, they are measured by proton polarizations:

$$
P_{p}=\frac{(\alpha+\cos \theta) \hat{p}+\beta \hat{p} \times \hat{s}+\gamma(\hat{p} \times \hat{s}) \times \hat{p}}{1+\alpha \cos \theta}
$$

Polarization induced observables

- Key point: particle spins are encoded in their decay products.

$$
\frac{d \Gamma}{d \cos \theta} \propto 1+\alpha \cos \theta
$$

- With entangled $\Xi^{-} \bar{\Xi}^{+}$and $\Xi^{-} \rightarrow \Lambda \pi^{-} \rightarrow p 2 \pi^{-}$, BESIII measure the Lee-Yang parameters and their induced CPV
[BESIII, Nature 2022]
Strong phase independent! $\longleftarrow \Delta \phi_{\mathrm{CP}} \approx \frac{\langle\alpha\rangle}{\sqrt{1-\langle\alpha\rangle^{2}}}\left(\frac{\beta+\bar{\beta}}{\alpha-\bar{\alpha}}\right)_{\Xi}=(-5 \pm 15) \times 10^{-3}$
- Application to more channels with Cascade decays (e.g. $\Lambda_{b} \rightarrow \Lambda V \rightarrow p 3 \pi$)

1. Angular distribution encodes the helicity amplitudes
2. They induce CPVs with different strong phase dependences

$$
\sin \delta_{S} \mathbf{v s} \cos \delta_{s}
$$

See Zheng-Yi Wei's talk [Geng, Liu, Wei, et al, 2106.10628,2109.09524,2206.00348;Zhou, et al, 2210.15357]

Polarization induced observables

- Strong phase dependence: $\sin \delta_{s}$ vs $\cos \delta_{s}$

Whatever the strong phase is, either $|\sin \delta|$
or $|\cos \delta|$ would be larger than 0.7.

- Question: does this complementarity generally exist?
- Question: if yes, how to find them systematically?

T-odd correlation induced CP asymmetry

- T-odd correlation Q_{-}induced CPV have cosine dependence on strong phases

$$
T Q_{-}=-Q_{-} T, \quad A_{C \bar{P}}^{Q} \equiv \frac{\left\langle Q_{-}\right\rangle-\left\langle\bar{Q}_{-}\right\rangle}{\left\langle Q_{-}\right\rangle+\left\langle\bar{Q}_{-}\right\rangle} \propto \cos \delta_{s}
$$

if it satisfies two conditions: (i) for the final-state basis $\left\{\left|\psi_{n}\right\rangle, \mathrm{n}=1,2, \ldots\right\}$, there is a unitary transformation U, s.t. $U T\left|\psi_{n}\right\rangle=e^{-i \alpha}\left|\psi_{n}\right\rangle$; (2) $U Q_{-} U^{\dagger}=Q_{-}$.

Proof:

$$
\begin{array}{rlrl}
\langle f| Q_{-}|f\rangle & =\langle i| S^{\dagger} Q_{-} S|i\rangle & \left\langle\psi_{m}\right| Q_{-}\left|\psi_{n}\right\rangle & =\left\langle\psi_{m}\right| \mathcal{T}^{\dagger} \mathcal{T} Q_{-}\left|\psi_{n}\right\rangle^{*} \\
& =\sum_{m, n}\left\langle\psi_{i}\right| S^{\dagger}\left|\psi_{m}\right\rangle\left\langle\psi_{m}\right| Q_{-}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right| S\left|\psi_{i}\right\rangle & & =-\left\langle\psi_{m}\right| \mathcal{T}^{\dagger} Q_{-} \mathcal{T}\left|\psi_{n}\right\rangle^{*} \\
& =\sum_{m, n} A_{m}^{*} A_{n}\left\langle\psi_{m}\right| Q_{-}\left|\psi_{n}\right\rangle . & & =-\left\langle\psi_{m}\right| \mathcal{T}^{\dagger} \mathcal{U}^{\dagger} \mathcal{U} Q_{-} \mathcal{U}^{\dagger} \mathcal{U} \mathcal{T}\left|\psi_{n}\right\rangle^{*} \\
& & =-\left\langle\psi_{m}\right| \mathcal{T}^{\dagger} \mathcal{U}^{\dagger} Q_{-} \mathcal{U} \mathcal{T}\left|\psi_{n}\right\rangle^{*} \\
& & =-\left\langle\psi_{m}\right| Q_{-}\left|\psi_{n}\right\rangle^{*},
\end{array}
$$

$$
\longrightarrow \quad\langle f| Q_{-}|f\rangle \ni \operatorname{Im}\left(A_{m}^{*} A_{n}\right)
$$

$\longrightarrow A_{C P}^{Q_{-}} \propto \sin \delta_{w} \cos \delta_{s}$

T-odd correlation induced CP asymmetry

- Example 1. Triple product $Q_{1} \equiv\left(\vec{s}_{1} \times \vec{s}_{2}\right) \cdot \hat{p}$ in $P \rightarrow P_{1} P_{2}$

$$
\begin{array}{llll}
T: \vec{p} \rightarrow-\vec{p}, h \rightarrow h ; & U=R(\pi):-\vec{p} \rightarrow \vec{p}, h \rightarrow h & \longrightarrow & \text { condition (i) } \\
T: Q_{1} \rightarrow-Q_{1} ; & U=R(\pi): Q_{1} \rightarrow Q_{1} & \longrightarrow & \text { condition (ii) }
\end{array}
$$

- Example 2. Triple product $Q_{p} \equiv\left(\hat{p}_{1} \times \hat{p}_{2}\right) \cdot \hat{p}_{3}$ in $P \rightarrow P_{1} P_{2} P_{3} P_{4}$

$$
\begin{array}{ll}
T: \vec{p} \rightarrow-\vec{p} ; & U=P:-\vec{p} \rightarrow \vec{p} \\
T: Q_{p} \rightarrow-Q_{p} ; & U=P: Q_{p} \rightarrow-Q_{p}
\end{array}
$$

T-odd correlation induced CP asymmetry

- For the decay $\Lambda_{b} \rightarrow N^{*}(1520) K^{*}$, three such T-odd correlations

$$
\begin{aligned}
& Q_{1} \equiv\left(\vec{s}_{1} \times \vec{s}_{2}\right) \cdot \hat{p}=\frac{i}{2}\left(s_{1}^{+} s_{2}^{-}-s_{1}^{-} s_{2}^{+}\right) \\
& \left.Q_{2} \equiv\left(\vec{s}_{1} \cdot \hat{p}\right)\left(\vec{s}_{2} \cdot \hat{p}\right) Q_{1}+Q_{1}\left(\overrightarrow{s_{1}} \cdot \hat{p}\right)\left(\vec{s}_{2} \cdot \hat{p}\right)=\frac{i}{2} s_{1}^{z} s_{2}^{z}\left(s_{1}^{+} s_{2}^{-}-s_{1}^{-} s_{2}^{+}\right)+\frac{i}{2}\left(s_{1}^{+} s_{2}^{-}-s_{1}^{-} s_{2}^{+}\right)\right)_{1}^{z} s_{2}^{z} \\
& Q_{3} \equiv\left(\vec{s}_{1} \cdot \vec{s}_{2}\right) Q_{1}+Q_{1}\left(\vec{s}_{1} \cdot \vec{s}_{2}\right)-Q_{2}=\frac{i}{2}\left(s_{1}^{+} s_{1}^{+} s_{2}^{-} s_{2}^{-}-s_{1}^{-} s_{1}^{-} s_{2}^{+} s_{2}^{+}\right)
\end{aligned}
$$

- Their expectations are imaginary helicity amplitude interferences

$$
\left\langle Q_{3}\right\rangle=2 \sqrt{3} \operatorname{Im}\left(H_{+1,+\frac{3}{2}} H_{-1, \frac{1}{2}}^{*}+H_{-1,-\frac{3}{2}}^{*} H_{+1,+\frac{1}{2}}\right) \quad \cos \delta_{S} \mathbf{v s} \sin \delta_{S}
$$

- Moreover, complementary T-even correlations are found

$$
\begin{aligned}
& P_{1} \equiv \vec{s}_{1} \cdot \vec{s}_{2}-\left(\vec{s}_{1} \cdot \hat{p}\right)\left(\vec{s}_{2} \cdot \hat{p}\right), P_{2} \equiv\left(\vec{s}_{1} \cdot \hat{p}\right)\left(\vec{s}_{2} \cdot \hat{p}\right) P_{1}+P_{1}\left(\vec{s}_{1} \cdot \hat{p}\right)\left(\vec{s}_{2} \cdot \hat{p}\right) \\
& P_{3} \equiv P_{1}^{2}-\left[\vec{s}_{1}^{2}-\left(\vec{s}_{1} \cdot \hat{p}\right)^{2}\right]\left[\vec{s}_{2}^{2}-\left(\vec{s}_{2} \cdot \hat{p}\right)^{2}\right]-\left[\left(\vec{s}_{1} \times \vec{s}_{1}\right) \cdot \hat{p}\right]\left[\left(\vec{s}_{2} \times \vec{s}_{2}\right) \cdot \hat{p}\right]
\end{aligned}
$$

Real part Exactly Complementary!

T-odd correlation induced CP asymmetry

- The expectations of the complementary T-odd and T-even correlations are both encoded in angular distribution of secondary decays of $N^{*}(1520) K^{*}$

- Complementary CP asymmetries can thereby be measured, which depend on $\cos \delta_{s} \& \sin \delta_{s}$.

$$
\begin{aligned}
& \frac{d \Gamma}{d \mathrm{c}_{1} d \mathrm{c}_{2} d \varphi} \propto \mathrm{~s}_{1}^{2} \mathrm{~s}_{2}^{2}\left(\left|\mathcal{H}_{+1,+\frac{3}{2}}\right|^{2}+\left|\mathcal{H}_{-1,-\frac{3}{2}}\right|^{2}\right) \\
& +\mathrm{s}_{1}^{2}\left(\frac{1}{3}+\mathrm{c}_{2}^{2}\right)\left(\left|\mathcal{H}_{+1,+\frac{1}{2}}\right|^{2}+\left|\mathcal{H}_{-1,-\frac{1}{2}}\right|^{2}\right) \\
& +2 \mathrm{c}_{1}^{2}\left(\frac{1}{3}+\mathrm{c}_{2}^{2}\right)\left(\left|\mathcal{H}_{0,-\frac{1}{2}}\right|^{2}+\left|\mathcal{H}_{0,+\frac{1}{2}}\right|^{2}\right) \\
& -\frac{\mathrm{s}_{1}^{2} \mathrm{~s}_{2}^{2}}{\sqrt{3}} \operatorname{Im}\left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*}+\mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*}\right) \sin 2 \varphi \\
& +\frac{\mathrm{s}_{1}^{2} \mathrm{~s}_{2}^{2}}{\sqrt{3}} \operatorname{Re}\left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*}+\mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*}\right) \cos 2 \varphi \\
& -\frac{4 \mathrm{~s}_{1} \mathrm{c}_{1} \mathrm{~s}_{2} \mathrm{c}_{2}}{\sqrt{6}} \operatorname{Im}\left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*}+\mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*}\right) \sin \varphi \quad\left\langle Q_{1}+2 Q_{2}\right\rangle \\
& +\frac{4 \mathrm{~s}_{1} \mathrm{c}_{1} \mathrm{~s}_{2} \mathrm{c}_{2}}{\sqrt{6}} \operatorname{Re}\left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*}+\mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*}\right) \cos \varphi \quad\left\langle P_{1}+2 P_{2}\right\rangle
\end{aligned}
$$

See Jian-Peng Wang's talk

Recent progress on QCD Factorization

QCD Factorization

- Factorization makes hadron involved physical processes calculable
\Leftrightarrow Short-distance dynamics: perturbatively calculable
\Rightarrow Long-distance dynamics: universal inputs, e.g., form factors, LCDAs

[Beneke,Buchalla,Neubert,Sachradja, BBNS]
[Keum,Li,Lu,Sanda,Xiao, PQCD]
[Bauer, Pirjol, Rothstein, Stewart, SCET]
- Crucial to SM predictions for two-body B decays, especially CP violation
- Data + short-distance dynamics \Rightarrow nonperturbative QCD

Annihilation amplitude

- BBNS suffers from endpoint singularities in annihilation diagrams

- Parametrization of the logarithmic divergence by BBNS

$$
\begin{aligned}
& \int_{0}^{1} d x \frac{\phi_{M}(x, \mu)}{\bar{x}^{2}}=\left(\lim _{u \rightarrow 1} \frac{\phi_{M}(u, \mu)}{\bar{u}}\right) \underbrace{\int_{0}^{1} \frac{d x}{\bar{x}}}+\underbrace{\int_{0}^{1} \frac{d x}{\bar{x}}\left[\frac{\phi_{M}(x, \mu)}{\bar{x}}-\left(\lim _{u \rightarrow 1} \frac{\phi_{M}(u, \mu)}{\bar{u}}\right)\right]}_{\text {finite }} \\
& X_{A}^{M}=\left(1+\rho_{A} e^{i \varphi_{A}}\right) \ln \frac{m_{B}}{\Lambda_{h}} .
\end{aligned}
$$

- Make BBNS much less predictive
\Rightarrow for pure annihilation channels
\Rightarrow for CP violation, which is sensitive to strong phase

Annihilation amplitude

- The fact: no divergence here! The power counting Soft $k \sim \Lambda_{\mathrm{QCD}} \rightarrow 0$ is wrong.
- The key: pick up the missing piece!

- The complete formulation (keep $p_{1} \cdot k$):

$$
\int_{0}^{\infty} d \omega \phi_{B}^{+}(\omega) \int_{0}^{1} d x \phi_{M_{2}}(x) \int_{0}^{1} d y \phi_{M_{1}}(y) \frac{1}{\bar{x} y\left(\bar{x}-\omega / m_{B}+i \epsilon\right)} \approx 18\left[\left(\ln \left(m_{B} / \lambda_{B}\right)+\gamma_{E}+2\right)-i \pi\right]
$$

From hard-collinear gluon exchange

- The annihilation diagram is calculable, finite, and contains strong phase!

Annihilation amplitude

- It corrects the BBNS factorization of the annihilation diagram!
- It makes the BBNS formalism more predictive!
- It is important to phenomenology, especially to CPV!

	$\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}$	$\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}$
$\bar{B}_{s} \rightarrow \pi^{+} \pi^{-}, \pi^{0} \pi^{0}$	$-36.3_{-1.3}^{+8.2}(0.0 \pm 0.0)$	$-4.2_{-9.0}^{+21.4}\left(35.9_{-11.2}^{+15.6}\right)$
$\bar{B}_{s} \rightarrow \rho_{L}^{+} \rho_{L}^{-}, \rho_{L}^{0} \rho_{L}^{0}$	$-36.3_{-1.8}^{+8.3}(0.0 \pm 0.0)$	$-4.3_{-9.0}^{+21.5}\left(35.9_{-11.2}^{+15.6}\right)$
$\bar{B}_{s} \rightarrow \omega_{L} \omega_{L}$	$-36.3_{-3.1}^{+8.3}(0.0 \pm 0.0)$	$-3.8_{-9.7}^{+21.8}\left(35.9_{-11.2}^{+15.6}\right)$
$\bar{B}_{s} \rightarrow \rho_{L} \omega_{L}$	$0.0 \pm 0.0(0.0 \pm 0.0)$	$-71.0_{-5.4}^{+6.3}\left(-71.0_{-5.4}^{+6.3}\right)$
$\bar{B}_{d} \rightarrow K^{+} K^{-}$	$39.0_{-5.6}^{+3.2}(0.0 \pm 0.0)$	$-2.2_{-26.4}^{+19.1}\left(-47.0_{-18.8}^{+15.7}\right)$
$\bar{B}_{d} \rightarrow K_{L}^{*+} K_{L}^{*-}$	$39.6_{-6.7}^{+4.9}(0.0 \pm 0.0)$	$-1.4_{-26.9}^{+19.7}\left(-47.0_{-18.8}^{+15.7}\right)$
$\bar{B}_{d} \rightarrow \phi_{L} \phi_{L}$	$38.3_{-15.8}^{+11.4}(0.0 \pm 0.0)$	$27.8_{-25.9}^{+5.7}(0.0 \pm 0.0)$

Light-cone Distribution Amplitudes

- LCDA: parton momentum fraction distribution in the light-cone direction

$$
\int \frac{d \xi^{-}}{2 \pi} e^{i x p^{+} \xi^{-}}\langle 0| \bar{\psi}_{1}(0) n \cdot \gamma \gamma_{5} U\left(0, \xi^{-}\right) \psi_{2}\left(\xi^{-}\right)|\pi(p)\rangle=i f_{\pi} \Phi_{\pi}(x)
$$

- Critical nonperturbative inputs to factorization calculation
\Rightarrow Extracted from data (suffer pollution from power corrections)

\Rightarrow Calculated by nonperturbative methods, e.g., Sum Rules, Dyson-Schwinger equation, inverse problem, ... [Ball,'07; Cheng,'20; Chang,Roberts,...,'13; H.n.Li, 2205.06746]
- A first-principle lattice QCD calculation is available.

> [Lattice Parton Collaboration, J.Hua et al, $$
\begin{array}{l}\text { Phys.Rev.Lett. } 129 \text { (2022) 132001; } \\ \text { Phys.Rev.Lett. } 127 \text { (2021) 062002] }\end{array}
$$

Light-cone Distribution Amplitudes

- LCDA is a light-like correlation. Cannot be directly calculated by lattice.
- Instead, a quasi-DA can be calculated

equal-time correlation
- Large momentum effective theory (LaMET): extract LCDA from quasi-DA

$$
\underset{\text { Quasi-DA }}{\tilde{q}\left(x, P^{z}, \mu\right)}=\int \frac{d y}{|y|} \underbrace{C\left(x, y, P^{z}, \mu\right)}_{\text {Matching kernel }} \underset{\text { LCDA }}{q(y, \mu)}+\underset{\text { Power suppressed }}{\left(\frac{\Lambda^{2}, M^{2}}{\left(P^{z}\right)^{2}}\right)}
$$

Light-cone Distribution Amplitudes

- Lattice results for leading-twist pion and kaon LCDAs

Other Highlights

Other highlights

- The long-distance penguin contribution to $\bar{B} \rightarrow \gamma \gamma$, a novel B meson DA \quad [QQ, Y.L.Shen, C.Wang, Y.M.Wang, 2207.02691]
- Modified PQCD and its application in $B \rightarrow \pi \pi$ decays
[S.Lü, M.Z.Yang, 2211.10917]

New Calculation

- State-of-art PQCD calculation of two-body B decays

See Shan Cheng's talk
[J.Chai, S.Cheng, Y.H.Ju, C.D.Lu, 2207.04190]

- PQCD calculation of baryon decays

See Jia-Jie Han's and Chao-Qi Zhang's talks [J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, F.S.Yu, 2202.04804;C.Q.Zhang, J.M.Li, M.K.Jia, R.Zhou, 2202.09181, 2206.04501, 2210.15357]

- Sum Rule calculation of baryon decays

See Zhen-Xing Zhao’s talk
[Y.Miao, H.Deng, K.S.Huang, J.Gao, Y.L.Shen, 2206.12189;Z.X.Zhao, 2103.09436; K.S.Huang, W.Liu, Y.L.Shen, F.S.Yu, 2205.06095]

New correction

- NLO QCD corrections to inclusive $b \rightarrow c \ell \bar{\nu}$ decay spectra up to $1 / m_{Q}^{3}$
- A Reappraisal of $B \rightarrow \gamma \ell \bar{\nu}$: Factorization and Sudakov Resummation
- Strange quark mass effect in $B_{s} \rightarrow \gamma \gamma, \gamma \ell \bar{\ell}$ decays
- NNLO matching of $B_{c}^{(*)}$ decay constants
[A.M.Galda, M.Neubert, X.Wang, 2203.08202]
[D.H.Li, L.Y.Li, C.D.Lü, Y.L.Shen, 2205.05528]
See Wei Tao's talk [W.Tao, R.L.Zhu, Z.J.Xiao, 2209.15521]

Other highlights

New channels

- Weak decays of excited-state mesons, e.g. $D_{(s)}^{*}, B_{c}^{*}$
[S.Cheng, Y.H.Ju, QQ, F.S.Yu, 2203.06797;
J.H.Sheng, Q.Y.Hu,R.M.Wang, EPJC'22; Y.L.Yang, L.T. Wang, K.Li, L.T.Li, J.S.Huang, Q.Chang, J.F.Sun, 2207.10277,2208.02396]
- Inclusive weak-annihilation decays and lifetimes of $\Xi_{b c}$

See Guo-He Yang's talk

- PQCD calculation of four-body non-leptonic B decays

New observables

- Probing hyperon CP violation from charmed baryon decays

See Long-Ke Li's talk
[J.P.Wang, F.S.Yu, 2208.01589]

New Physics

- Scrutinizing new physics in semi-leptonic $B_{c} \rightarrow J / \psi \tau \nu$ decay
[R.Y.Tang, Z.R.Huang, C.D.Lü, R.L.Zhu, 2204.04357]
- Global analysis on flavor anomalies in $b \rightarrow s$ transitions

See Qiao-Yi Wen's talk [J.M.Chen, Q.Y.Wen, F.R.Xu, M.C.Zhang, 2104.03699]

- Lining the $b \rightarrow s \ell^{+} \ell^{-}$anomalies with the W mass shift and others

See Xing-Bo Yuan's \& Meng Shen's \& Ze-Jun Xie \& Ze-Kun Liu's talks [X.Q.Li, Z.J.Xie, Y.D.Yang, X.B.Yuan, 2205.02205;X.Q.Li, M.Shen, Y.D.Yang, X.B.Yuan, 2112.14215; S.L.Chen, W.W.Jiang, Z.K.Liu, 2205.15794]

Summary

Summary

- Novel CPV observables are proposed, including those complementary to each other, which would help discover baryonic CPV.
- QCD factorization has been reanalyzed with endpoint singularities "disappearing" in annihilation amplitudes, and it become more predictive with lattice calculation of LCDAs.
- There are many other beautiful works in flavor physics in the past year, including progresses of new mechanisms, new calculations, new corrections, new channels, new observables and new physics.

