Overview of Belle and Belle II results and prospects

䣕文标（中国科学技术大学）

全国第十九届重味物理和CP破坏研讨会，2022．12．9，南京

KEKB \& Belle

- Asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$collider
- @ Tsukuba, Japan
- Peak luminosity 2.1×10^{34}

SuperKEKB \& Belle II

- Peak luminosity
\checkmark Record: $4.7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
\checkmark Target: $6.3 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Target data sample: $50 \mathrm{ab}^{-1}$


```
Construction started in
2010
```

LS1: Long shutdown 1, install another layer of VXD, replace damaged sensers, etc 2022/72023/9

Belle II Collaboration

－Belle II 合作组： 1155 个成员， 130 个单位， 26 个国家／地区 －（中国大陆） 15 个单位：北京高能所／中国科学技术大学／北京大学／北京航空航天大学／复旦大学／苏州大学／辽宁师范大学／山东大学／南京师范大学／郑州大学／河南师范大学／湖南师范大学／ （2022）东南大学／南开大学／吉林大学

Data taking at Belle II

－Integrated luminosity
$>\sim 362 \mathrm{fb}^{-1}$ at $\mathrm{Y}(4 \mathrm{~S})$

12月9日下午	报告人	报告题目	单位	主持人
Session 3 底夸克与新物理				
14：00－14：20	何吉波	LHCb 上味物理中的反常	中国科学 院大学	
14：20－14：40	贾森	First result of scan data at around 10.75 GeV at Belle 1 I	东南大学	郑阳恒

\checkmark Combine with Belle $711 \mathrm{fb}^{-1}$ at $\mathrm{Y}(4 \mathrm{~S})$
$>\sim 42 \mathrm{fb}^{-1} 60 \mathrm{MeV}$ below $\mathrm{Y}(4 \mathrm{~S})$
$>\sim 19 \mathrm{fb}^{-1}$ at $\sim 10.75 \mathrm{GeV}$

Belle II physics program

Process	$\sigma(\mathrm{nb}) @ \mathrm{Y}(4 \mathrm{~S})$
$\mathbf{b} \overline{\mathbf{b}}$	$\mathbf{1 . 1}$
$\mathbf{c \overline { c }}$	$\mathbf{1 . 3}$
$q \bar{q}(\mathrm{q}=\mathrm{u}, \mathrm{d}, \mathrm{s})$	2.1
$\tau^{+} \tau^{-}$	$\mathbf{0 . 9}$
B factory，allso	
tau－charm factory	

Physics potential summarized in the Belle II＂Physics Book＂ PTEP 2019 123C01，arXiv：1808．10567

$14: 40-15: 00(15+5)$	李郁博	Recent results of charmed baryons focusing on new baryon at Belle

$15: 50-16: 10$	李龙科	Measurement of decay asymmetry parameter and CP violation in charmed baryon decays

12日10下午

$$
\mathbf{X}(\mathbf{3 8 7 2}) \rightarrow \pi^{+} \pi^{-} \pi^{0}
$$

- All known X(3872) decay modes contain open charm or charmonium mesons.
- X(3872) decays into final states with light hadrons ?
- X(3872) as charmonium, significant branching fraction for gg \rightarrow hadrons.
- Triangle logarithmic singularity
$\checkmark \operatorname{Br}\left(\mathbf{X}(3872) \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) \approx 10^{-3}-10^{-4}$.
\checkmark A narrow interval of $m(\pi \pi)$ near value of $2 \mathrm{~m}_{\mathrm{D}} \approx 3.73 \mathrm{GeV}$.
- Belle: $(\mathbf{7 7 2} \pm \mathbf{1 1}) \times \mathbf{1 0}^{6} \mathbf{B} \overline{\mathrm{~B}}$ events, $B \rightarrow K \mathbf{X}(\mathbf{3 8 7 2})$.

PRD 99 (2019) 116023

$B \rightarrow K \mathbf{X}(\mathbf{3 8 7 2}) \boldsymbol{\&} \mathbf{X}(\mathbf{3 8 7 2}) \rightarrow \pi^{+} \pi^{-} \pi^{0}$

arXiv:2206.08592 PRD accepted

- Veto continuum background by MVA
- Veto no-B background by $\Delta E=E_{\text {beam }}-E_{B}$
- Same final state due to $B \rightarrow D \rho, K *(892) \rho$ by mass window cut
- Case I: X(3872) $\rightarrow \pi^{+} \pi^{-} \pi^{0}$ MC by Phase space
- No significant signal is found

$\mathbf{B} \rightarrow \mathbf{K X (3 8 7 2)} \boldsymbol{\&} \mathbf{X (3 8 7 2)} \rightarrow \pi^{+} \pi^{-} \pi^{0}$

- Case II: X(3872) $\rightarrow \pi^{+} \pi^{-} \pi^{0}$ MC with PRD 99 (2019) 116023 $\checkmark \pi^{+} \pi^{-}$invariant mass peaks close to $2 \mathrm{~m}_{\mathrm{D}} \approx 3.73 \mathrm{GeV}$
- No significant signal is found

> arXiv:2206.08592 PRD accepted

$B \rightarrow K \mathbf{X}(3872) \boldsymbol{\&} \mathbf{X}(3872) \rightarrow \pi^{+} \pi^{-} \pi^{0}$

- $\pi^{+} \pi^{-}$invariant mass in $\mathrm{X}(\mathbf{3 8 7 2})$ signal region
\checkmark No significant enhancement near $2 \mathrm{~m}_{\mathrm{D}} \approx 3.73 \mathrm{GeV}$
- More data @ Belle II ?

channel	case I	case II
$B^{ \pm} \rightarrow K^{ \pm} X(3872), X(3872) \rightarrow \pi^{+} \pi^{-} \pi^{0}<1.9 \times 10^{-6}<1.5 \times 10^{--}$		
$B^{0} \rightarrow K^{0} X(3872), X(3872) \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$<1.5 \times 10^{-6}$	$<1.8 \times 10^{-7}$
$X(3872) \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$<1.3 \%$	$<1.2 \times 10^{-3}$

arXiv:2206.08592 PRD accepted

Search for tetraquark states $\mathbf{X}_{\text {ccss̄}}$

TABLE I. Predicted masses and widths for the $X_{c c \bar{s} \bar{s}}$ resonances
in $D_{s}^{+} D_{s}^{+}$and $D_{s}^{*+} D_{s}^{*+}$ final states [19].

		Mass $\left(\mathrm{MeV} / c^{2}\right)$	Width (MeV)
Mode	$I J^{P}$	4902	3.54
$X_{c c \bar{s} \bar{s}} \rightarrow D_{s}^{+} D_{s}^{+}$	00^{+}	4821	5.58
$X_{c c \bar{s} \bar{s}} \rightarrow D_{s}^{*+} D_{s}^{*+}$	02^{+}	4846	10.68
	02^{+}	4775	23.26

PR D 102 (2020) 054023

- Exotic states with nonzero electric charge
\checkmark LHCb: $\mathbf{T}_{\text {cc }}+$ in $\mathrm{D}^{0} \mathrm{D}^{0} \pi^{+}$mass spectrum near threshold - Search for double-heavy tetraquark candidates by $D_{S}^{+} D_{S}^{+}$ and $\mathrm{D}_{\mathrm{S}}^{*+} \mathrm{D}_{\mathrm{S}}^{*+}$ at Belle
$\checkmark \mathrm{D}_{\mathrm{S}}^{*+} \rightarrow \gamma \mathrm{D}_{\mathrm{S}}^{+}$
$\checkmark \mathbf{D}_{\mathbf{S}}^{+} \rightarrow \phi\left(\rightarrow \mathbf{K}^{+} \mathbf{K}^{-}\right) \pi^{+}$and $\overline{\mathbf{K}}^{*}(\mathbf{8 9 2})^{\mathbf{0}}\left(\rightarrow \mathbf{K}^{-} \boldsymbol{\pi}^{+}\right) \mathbf{K}^{+}$

Search for tetraquark states $\mathbf{X}_{\mathbf{c c s} \bar{s}}$

PR D 105 (2020) 032002

- Best $\mathrm{D}_{\mathrm{S}}^{*+}$ candidate with mass constrained fit for each D_{S}^{+}candidate
- No multiple candidates after all selection
- Use Y(1S), Y(2S) and data $\sqrt{\mathbf{s}}=10.52$, 10.58 , and 10.867 GeV
- No clear signals are observed,
\checkmark Provide 90% CL Upper limits

Two-photon decay width of $\chi_{c 2}(1 P)$

- $\mathrm{T}_{\gamma \gamma}$ of a P-wave charmonium, whose description is at intersection between perturbative and non- perturbative QCD. \checkmark Theoretical calculation: between 280 eV and 930 MeV
- Two approaches: two-photon decay \& two-photon production
$\bullet \gamma \gamma \rightarrow \chi_{\mathrm{c} 2}(\mathbf{1 P}), \chi_{\mathrm{c} 2}(\mathbf{1 P}) \rightarrow \gamma \mathrm{J} / \psi$ and $\mathrm{J} / \psi \rightarrow \mathbf{l}^{+1}(\mathbf{l}=\mathrm{e}, \mu)$
\checkmark worse results by two-photon production
- Belle: $\mathbf{3 2 . 6} \mathbf{~ f b}^{-1} \rightarrow \mathbf{9 7 1} \mathbf{~ f b}^{-1}$ data

	Approach	$\mathrm{T}_{w}(\mathrm{eV})$	
CLEO-c	$\chi_{\mathbf{c 2} 2}(\mathbf{1 P}) \rightarrow \gamma \gamma$	$\mathbf{5 5 5} \pm \mathbf{5 8} \pm \mathbf{3 2} \pm \mathbf{2 8}$	
BESIII	$\chi_{\mathbf{c 2}}(\mathbf{1 P}) \rightarrow \gamma \gamma$	$\mathbf{5 8 6} \pm \mathbf{1 6} \pm \mathbf{1 3} \pm \mathbf{2 9}$	
Cleo III	$\gamma \gamma \rightarrow \chi_{\mathbf{c 2}}(\mathbf{1 P})$	$\mathbf{5 8 2} \pm \mathbf{5 9} \pm \mathbf{5 0} \pm \mathbf{1 5}$	
Belle	$\gamma \gamma \rightarrow \chi_{\mathbf{c} 2}(\mathbf{1 P})$	$\mathbf{5 9 6} \pm \mathbf{5 8} \pm \mathbf{4 8} \pm \mathbf{1 6}$	$\mathbf{3 2 . 6}^{\mathbf{~ f b}}{ }^{\mathbf{- 1}}$

Two-photon decay width of $\chi_{c 2}(1 P)$

- Cross section of \mathbf{R} via two-photon process
\checkmark W: energy of resonance R
$\checkmark \mathbf{L}_{r p}(\mathbf{W})$: luminosity function

$$
\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-} R\right)=/ \sigma(\gamma \gamma \rightarrow R ; W) L_{\gamma \gamma}(W) d W,
$$

- Total width of \mathbf{R} is sufficiently small compared with its mass $\checkmark \mathrm{J}$: spin quantum number
$\checkmark \mathbf{M}_{\mathrm{R}}$: mass of \mathbf{R}

$$
\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-} R\right)=4 \pi^{2}(2 J+1) \frac{L_{\gamma \gamma}\left(m_{R}\right) \Gamma_{\gamma \gamma}^{R}}{m_{R}^{2}},
$$

- Select quasi-real two photon collisions
\checkmark Zero-tag mode

Two-photon decay width of $\chi_{c 2}(1 P)$

- A peaking background from $\mathrm{e}+\mathrm{e}-\rightarrow \gamma_{\text {ISR }} \psi(2 \mathrm{~S})$ $\checkmark \psi(\mathbf{2 S}) \rightarrow \gamma \chi_{\mathrm{c} 2}(\mathbf{1 P}), \chi_{\mathrm{c} 2}(\mathbf{1 P}) \rightarrow \gamma \mathrm{J} / \psi$ and $\mathrm{J} / \psi \rightarrow \mathbf{I}^{+} \mathbf{1}^{-}$ \checkmark Subtracted by MC simulation
- Belle results is almost same as that of BESIII results

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \phi \eta$ by ISR

Parameters	with $\phi(2170)$				without $\phi(2170)$	
$\chi^{2} / n d f$	Solution I Solution II Solution III Solution IV 77/56				$\begin{aligned} & \text { Solution I Solution II } \\ & 85 / 60 \end{aligned}$	
a_{0}	-4.1 ± 0.5	5.0 ± 0.7	-5.0 ± 0.5	-4.8 ± 0.2	-3.2 ± 0.7	5.0 ± 0.1
a_{1}	2.7 ± 0.1	2.6 ± 0.1	2.7 ± 0.1	2.6 ± 0.1	2.9 ± 0.1	2.6 ± 0.1
$\mathcal{B}_{\eta \phi}^{\phi(1680)} \Gamma_{e^{+} e^{-}}^{\phi(168)}(\mathrm{eV})$	122 ± 6	219 ± 15	163 ± 11	203 ± 12	75 ± 10	207 ± 16
$M_{\phi(1680)}\left(\mathrm{MeV} / c^{2}\right)$		1683	3 ± 7			± 8
$\Gamma_{\phi(1680)}(\mathrm{MeV})$		149	± 12			± 13
$\mathcal{B}_{\eta \phi}^{\phi(1680)}$	0.18 ± 0.02	0.19 ± 0.04	0.21 ± 0.02	0.17 ± 0.04	0.25 ± 0.1	0.23 ± 0.10
$\mathcal{B}_{\eta \phi}^{\phi(2170)} \Gamma_{e^{+} e^{-}}^{\phi(2170)}(\mathrm{eV})$	0.09 ± 0.05	0.06 ± 0.02	16.7 ± 1.2	17.0 ± 1.2		
$M_{\phi(2170)}\left(\mathrm{MeV} / c^{2}\right)$		2163.5	$(\text { fixed })$			
$\Gamma_{\phi(2170)}(\mathrm{MeV})$		31.1(fixed)			
$\theta_{\phi(1680)}\left({ }^{\circ}\right)$	-89 ± 2	96 ± 6	-92 ± 1	-86 ± 7	-87 ± 15	108 ± 22
$\theta_{\phi(2170)}\left({ }^{\circ}\right)$	37 ± 14	-102 ± 11	-167 ± 6	-155 ± 5		-

- $\phi \eta$ mode: isoscalar
arXiv:2209.000810 JHEP accepted
$\checkmark \phi^{*}$ and ω^{*} (OZI suppressed);
\checkmark useful to measure ϕ^{*} parameters.
- Study $\phi(1680)$ resonance parameters with Belle 980 fb $^{-1}$ data
- no clear observed $\phi(2170)$ signal, but 90% C.L. is consistent with that of BESIII.

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \boldsymbol{\Sigma}^{+} \overline{\boldsymbol{\Sigma}}^{-}$and $\boldsymbol{\Sigma}^{\mathbf{0}} \overline{\boldsymbol{\Sigma}}^{\mathbf{0}}$ by ISR

- Cross section at threshold \checkmark Charged: $\sigma \neq 0$; Neutral: $\sigma=0$; $\checkmark \mathbf{G}_{\mathrm{E}} \& \mathbf{G}_{\mathrm{M}}$ form factor.
- pQCD -motivated function describe BESIII results.
- Study with Belle with Belle 980 fb $^{-1}$ data
- All results are consistent within uncertainty

CKM Unitarity triangle

- Tests of quark-mixing matrix unitarity
\checkmark Precise measurement of unitarity triangle parameters
$\phi_{1}, \phi_{2}, \phi_{3},\left|\mathbf{V}_{\mathbf{c b}}\right|,\left|\mathbf{V}_{\mathbf{u b}}\right|$
$\checkmark \beta / \phi_{1}:$ mixing $+\mathbf{b} \rightarrow \mathbf{c} \overline{\mathbf{c}}, \mathbf{b} \rightarrow \mathbf{c} \overline{\mathbf{c}} \mathbf{d}$
$\checkmark \alpha / \phi_{2}:$ mixing $+\mathbf{b} \rightarrow \mathbf{u u} d$
$\checkmark \gamma / \phi_{3}: \mathbf{b} \rightarrow \mathbf{u c} \mathbf{c}, \mathbf{b} \rightarrow \mathbf{c} \overline{\mathbf{u}} \mathbf{s}$

$\beta / \phi_{1} @ \mathbf{B}^{\mathbf{0}} \rightarrow \mathbf{K}_{\mathrm{s}}^{\mathbf{0}} \mathbf{K}_{\mathbf{S}}^{\mathbf{0}} \mathbf{K}_{\mathbf{S}}^{\mathbf{0}}$

- Target \mathcal{B} and $\mathcal{A}_{\mathrm{CP}}$ asymmetry
- Process via b $\boldsymbol{\mathbf { s q }} \overline{\mathbf{q}}$
- Sensitive to non-SM effects
- Important for CP asymmetry
$\checkmark \mathcal{S}=-\sin 2 \phi_{1} @$ SM, mixing induced CPV
$\checkmark \mathcal{A}=0$ @ SM, direct CPV
\checkmark Deviation from SM, hint of NP !

$\mathcal{P}(\Delta t)=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left(1+q\left[\mathcal{S} \sin \left(\Delta m_{d} \Delta t\right)+\mathcal{A} \cos \left(\Delta m_{d} \Delta t\right)\right]\right)$

- Belle II $\mathbf{1 9 0}^{\mathbf{~ f b}}{ }^{-1}$ data
$\checkmark 53 \pm 8$ events
$\checkmark S=-1.86_{-0.46}^{+0.91} \pm 0.09$
$\checkmark \mathcal{A}=-0.22_{-0.27}^{+0.30} \pm 0.04$
- World average
$\checkmark \mathcal{S}=-0.83 \pm 0.17$
$\checkmark \mathcal{A}=0.15 \pm 0.12$

$\alpha / \phi_{2} @ B \rightarrow \pi \pi \& B \rightarrow \rho \rho$

- Measurement of \mathcal{B} and $\mathcal{A}_{\mathrm{CP}}$ $\mathrm{B}^{+} \rightarrow \pi^{+} \pi^{0}$
- Process via $b \rightarrow u$ diagrams
- Interference between tree and penguin diagrams

\checkmark Multivariate analysis to suppress continuum
\checkmark 3D signal extraction function
\checkmark Validation by $\mathrm{B}^{+} \rightarrow \overline{\mathbf{D}}\left(\rightarrow \mathbf{K}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}\right) \boldsymbol{\pi}^{+}$continuum
- Comparable sensitivity with $1 / 2$ of data

	Belle	Belle II
$\mathbf{B} \overline{\mathbf{B}}$ pairs	$\mathbf{\sim 1 9 7} \mathbf{~ M}$	$\mathbf{4 4 9} \mathbf{~ M}$
$\boldsymbol{B}\left(\times \mathbf{1 0}^{-\mathbf{6}}\right)$	$\mathbf{6 . 1 2} \pm \mathbf{0 . 5 3} \pm \mathbf{0 . 5 3}$	$\mathbf{6 . 5} \pm \mathbf{0 . 4} \pm \mathbf{0 . 4}$
$\boldsymbol{\mathcal { A }}_{\mathbf{C P}}$	$\mathbf{- 0 . 0 8 5} \pm \mathbf{0 . 0 8 5} \pm \mathbf{0 . 0 1 9}$	

- Belle II 190 fb $^{-1}$ data

$\alpha / \phi_{2} @ \mathbf{B}^{0} \rightarrow \pi^{0} \pi^{0}$

- Very challenge, neutral final states
- All neutral suitable for Belle II

$$
\mathscr{A}_{C P}=\frac{\Gamma\left(\bar{B} \rightarrow \pi^{0} \pi^{0}\right)-\Gamma\left(B \rightarrow \pi^{0} \pi^{0}\right)}{\Gamma\left(\bar{B} \rightarrow \pi^{0} \pi^{0}\right)+\Gamma\left(B \rightarrow \pi^{0} \pi^{0}\right)}
$$

- Belle II ~190 fb ${ }^{-1}$ data
\checkmark Photons by FastBDT; data driven method for background suppression
\checkmark Belle II flavor algorithm; validation by $B^{0} \rightarrow D\left(\rightarrow K^{+} \pi^{-} \pi^{0}\right) \pi^{0}$

Belle

	Belle	Belle II
$\mathbf{B} \overline{\mathbf{B}}$ pairs	~197 M	$\mathbf{7 7 1 ~ M}$
$\mathcal{B}\left(\times \mathbf{1 0}^{-6}\right)$	$\mathbf{1 . 3 2} \pm \mathbf{0 . 2 5} \pm \mathbf{0 . 1 8}$	$\mathbf{1 . 3 1} \pm \mathbf{0 . 1 9} \pm \mathbf{0 . 1 9}$
$\boldsymbol{\mathcal { A }}_{\mathbf{C P}}$	$\mathbf{- 0 . 1 4} \pm \mathbf{0 . 4 6} \pm \mathbf{0 . 0 7}$	$\mathbf{- 0 . 1 4} \pm \mathbf{0 . 3 6} \pm \mathbf{0 . 1 0}$

- Efficiency 35.5\% @ Belle II
- Efficiency 22\% @ Belle
- Comparable sensitivity with $1 / 4$ of data

$\alpha / \phi_{2} @ \mathbf{B}^{\mathbf{0}} \rightarrow \rho^{+} \rho^{-}$

arXiv:2208.03554

- Golden channel for ϕ_{2},
\checkmark small contribution from penguin diagram
- Rely on neutral performance of Belle II
- Target:B and polarization
- Belle II ~190 fb ${ }^{-1}$ data
\checkmark Continuum and peaking background (similar final states)
\checkmark 6D fit for signal yield

771 M $\quad 383$ M 197 M

$\Delta \mathrm{E}[\mathrm{GeV}]$

$m_{\pi^{+} \pi^{0}}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$

$m_{\pi^{-} \pi^{0}}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$

$\alpha / \phi_{2} @ \mathbf{B}^{+} \rightarrow \rho^{+} \rho^{0}$

arXiv:2206.12362

- Rely on neutral performance
- Target: $\mathcal{B}, \mathcal{A}_{\mathrm{CP}}$ and polarization
- Belle II ~190 fb ${ }^{-1}$ data
\checkmark Continuum and peaking background (similar final states)
\checkmark 6D fit for signal yield
- Belle II results: systematic dominated

	Values
Belle	$\mathcal{B}=(23.2-2.1 \pm 2.7) \times 10^{-6}$
197M B $\overline{\text { B }}$	$f_{L}=0.943{ }_{-0.033}^{+0.035} \pm 0.027$
	$\mathcal{A}_{C P}=-0.069 \pm 0.068 \pm 0.060$
BaBar	$\mathcal{B}=(23.7 \pm 1.4 \pm 1.4) \times 10^{-6}$
465M B $\overline{\text { B }}$	$f_{L}=0.950 \pm 0.015 \pm 0.006$
	$\mathcal{A}_{C P}=-0.054 \pm 0.055 \pm 0.010$

$\gamma / \phi_{3} @ \mathbf{B}^{+} \rightarrow \mathbf{D}^{\mathbf{0}}\left(\mathbf{K}_{\mathbf{s}}^{\mathbf{0}} \mathbf{h}^{+} \mathbf{h}^{-}\right) \mathbf{K}^{+}$

- Decay rate depends on interference of two amplitudes
\checkmark Sensitive to ϕ_{3}.
- ϕ_{3} with $\mathrm{r}_{\mathrm{B}}^{\mathrm{DK}}$ and $\boldsymbol{\delta}_{\mathrm{B}}^{\mathrm{DK}}$ manifests itself in the difference of dalitz distributions between B^{+}and B^{-}

$$
\begin{aligned}
& m_{+}^{2}=m_{K^{0} \pi^{+}}^{2} \\
& m_{-}^{2}=m_{K^{0} \pi^{-}}^{2}
\end{aligned}
$$

$$
A_{B^{+}}\left(m_{-}^{2}, m_{+}^{2}\right) \propto A_{\bar{D}}\left(m_{-}^{2}, m_{+}^{2}\right)+r_{B}^{D K} e^{i\left(\delta_{B}^{D K}-\phi_{3}\right)} A_{D}\left(m_{-}^{2}, m_{+}^{2}\right)^{0.5} \begin{array}{llll}
1.5 & \mathrm{M}^{2}\left(K_{\mathrm{s}}^{0} \pi^{+}\right)\left[\mathrm{GeV}^{2} / \mathrm{c}^{4}\right]
\end{array}
$$

$\gamma / \phi_{\mathbf{3}} @ \mathbf{B}^{+} \rightarrow \mathbf{D}^{\mathbf{0}}\left(\mathbf{K}_{\mathbf{s}}^{\mathbf{0}} \mathbf{h}^{+} \mathbf{h}^{-}\right) \mathbf{K}^{+}$

- Belle + Belle II combined analysis \checkmark NN-based MVA for K_{S}^{0}
\checkmark Additional statistics form $h=\pi$ and K
\checkmark Improved background rejection
- Yield increase by $\mathbf{4 0 \%}$ for Belle and additional $\mathbf{1 7 \%}$ statistics from Belle II

$$
\begin{gathered}
\phi_{3}=\left(68.7_{-5.1}^{+5.2}\right)^{\mathrm{o}} \\
\mathrm{r}_{\mathrm{B}}=0.0904_{-0.0077}^{+0.0075} \\
\delta_{\mathrm{B}}=\left(118.3_{-5.6}^{+5.5}\right)^{\mathrm{o}}
\end{gathered}
$$

JHEP 02 (2021) 169

- Future Belle II: 1747 @ 839 fb $^{-1} \sim 75 \mathrm{~K}$ @ 36 ab $^{-1}$
- Futrre LHCb: 13600 @ 9 fb $^{-1} \rightarrow \sim 75 \mathrm{~K} @ 50$ fb $^{-1}$
- similar-sized event samples

$\left|\mathbf{V}_{\mathrm{cb}}\right|$ and $\left|\mathbf{V}_{\mathrm{ub}}\right|$ measurement

- Extract $\left|\mathbf{V}_{\mathbf{c b}}\right|$ and $\left|\mathbf{V}_{\mathbf{u b}}\right|$
\checkmark Inclusive: sum over all possible hadronic final states B $\rightarrow X_{c / u} l v$
\checkmark Exclusive: specific final states $B \rightarrow D / D^{*} / \pi l v$
\checkmark Theoretically and experimentally independent

Type	$V_{c b}$	$V_{u b}$
Inclusive	$(42.19 \pm 0.78) \times 10^{-3}$	$(4.19 \pm 0.17) \times 10^{-3}$
Exclusive	$(39.10 \pm 0.50) \times 10^{-3}$	$(3.51 \pm 0.12) \times 10^{-3}$
Deviation	3.3σ	3.3σ

- Limitations
\checkmark Inclusive: higher order perturbative and non-terms in HQE
\checkmark Exclusive: hadronic form factors
- Complementary measurements: important

Measuring the sides of UT
$D_{s} \rightarrow l \nu$ $D \rightarrow l \nu$ $D \rightarrow \pi l \nu$

Untagged $\left|\mathbf{V}_{\text {cb }}\right|$

- Event reconstruction

$$
\begin{array}{ll}
\checkmark & B^{0} \rightarrow D^{-}\left(K^{+} \boldsymbol{\pi}^{-} \pi^{-}\right) \boldsymbol{l}^{+} \boldsymbol{v}_{\boldsymbol{l}} \\
\checkmark & B^{+} \rightarrow \overline{\boldsymbol{D}}^{\mathbf{0}}\left(\boldsymbol{K}^{+} \boldsymbol{\pi}^{-}\right) \boldsymbol{l}^{+} \boldsymbol{v}_{\boldsymbol{l}}
\end{array}
$$

Signal extraction with cosine angle distribution between B and ($\mathrm{D} l$) system

- D recoil momentum q^{2} calculation
$\checkmark \mathbf{q}^{2}$ by inferring diamond-frame approach
\checkmark Transfer $\mathbf{q} \rightarrow \boldsymbol{w} \equiv\left(m_{B}^{2}+m_{D}^{2}-q^{2}\right) / 2 m_{B} m_{D}$
\checkmark Split w distribution into 10 bins

$\frac{d \Gamma\left(B \rightarrow D \ell \nu_{\ell}\right)}{d w}=\frac{G_{\mathrm{F}}^{2} m_{D}^{3}}{48 \pi^{3}}\left(m_{B}+m_{D}\right)^{2}\left(w^{2}-1\right)^{3 / 2} \eta_{\mathrm{EW}}^{2} \mathcal{G}^{2}(w)\left|V_{c b}\right|^{2}$

$$
\eta_{E W}\left|V_{c b}\right|=(38.53 \pm 1.15) \times 10^{-3}
$$

consistent with exclusive world average

tagged $\left|\mathbf{V}_{\mathrm{cb}}\right|$

- Event reconstruction
$\checkmark B^{\mathbf{0}} \rightarrow D^{*-} \boldsymbol{l}^{+} \boldsymbol{v}_{\boldsymbol{l}}$
$\checkmark D^{*-} \rightarrow \bar{D}^{0} \pi^{-} \bar{D}^{0} \rightarrow K^{+} \pi^{-}$aa
\checkmark Challenging: low momentum pion from D^{*-}
\checkmark FEI using HT algorithm to tag B

Belle II Preliminary

$$
\frac{d \Gamma\left(B \rightarrow D \ell \nu_{\ell}\right)}{d w}=\frac{G_{\mathrm{F}}^{2} m_{D}^{3}}{48 \pi^{3}}\left(m_{B}+m_{D}\right)^{2}\left(w^{2}-1\right)^{3 / 2} \eta_{\mathrm{EW}}^{2} \mathcal{G}^{2}(w)\left|V_{c c}\right|^{2} \quad \eta_{E W}\left|V_{c b}\right|=(38.2 \pm 2.8) \times 10^{-3}
$$

Untagged $\left|\mathbf{V}_{\mathrm{ub}}\right|$

- Event reconstruction
$\checkmark B \rightarrow \pi l v\left(B^{0} \rightarrow \pi^{ \pm} l^{\mp} v\right)$
\checkmark Everything else including the other B is included as rest of events to determine \mathbf{p}_{v} \checkmark Signal yield by M_{bc} and $\Delta \mathrm{E}$ distribution

$$
\frac{d \Gamma(B \rightarrow \pi l \nu)}{d q^{2}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{24 \pi^{3}}\left|p_{\pi}\right|^{3}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

consistent with exclusive world average

$$
\left|V_{u b}\right|_{B^{0} \rightarrow \pi^{-l+\nu_{l}}}=\left(3.54 \pm 0.12_{\text {stat. }} \pm 0.15_{\text {syst. }} \pm 0.16_{\text {theo }}\right) \times 10^{-3}
$$

Tagged $\left|\mathbf{V}_{\mathrm{ub}}\right|$

- Event reconstruction
$\checkmark B \rightarrow \pi e v$
$\left.\checkmark B^{0} \rightarrow \pi^{+} e^{-} \bar{v}_{e} B^{+} \rightarrow \boldsymbol{\pi}^{0} e^{+} v_{e}\right)$
\checkmark FEI using HT algorithm to tag B

$$
\left|V_{u b}\right|=(3.88 \pm 0.45) \times 10^{-3}
$$

arXiv:2206.08102
consistent with exclusive world average

Prospects

- The Belle II has taken $423 \mathrm{fb}^{-1}$ of data, ~ equaling BaBar sample. Detector works well, many analysis in progress.
- Belle II results is directly competitive with previous B factories \checkmark Improvements in detector and trigger
\checkmark Powerful analysis strategies
\checkmark Fruitful results with early Belle II data

$\mathbf{X}(3872)$

- Strange $\mathbf{X}(\mathbf{3 8 7 2})$
\checkmark Narrow, very close to DD* threshold \checkmark No place @ charmonium potential model

