Two-body decays $\Lambda_b \rightarrow p\pi^-$, pK^- in PQCD

Jia-Jie Han (兰州大学•韩佳杰) 2022.12.09 HFCPV2022•第十九届重味物理和CP破坏研讨会

In collaboration with Ya Li, Shen-Yue Long, Hsiang-nan Li, Zhen-Jun Xiao and Fu-Sheng Yu

Outline

➤ Motivation

➢ Framework

➢ Results

➤ Summary

Motivation

٠

Heavy baryon physics

➢ Weak decays of heavy hadrons related tightly to SM, Researches on meson achieved fruitful results (QCDF, PQCD, SCET,.....).

- > CPV also plays an important role in evaluation of Universe.
- Sakharov three requirements:

[Sakharov ,1967]

- baryon number violation; C and CP violation; Out of thermal equilibrium
- As the most important issue in flavor physics, CP violation only confirmed in K, B, D meson.

 $a_{CP}^{T-odd}(\Lambda_b \to p\pi^+\pi^-\pi^-) = (-0.7 \pm 0.7 \pm 0.2)\%$ $A_{CP}(\Lambda_b \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0)\%, \qquad A_{CP}(\Lambda_b \to pK^-) = (-2.0 \pm 1.3 \pm 1.0)\% \text{ [LHCb,2018]}$

Baryon physics has lots of opportunities not only theoretically, but experimentally.

	2012	2018	2023	2029	2035
LHCb	Run-I	Run-II	Run-III	Run-IV	Run-V
luminosity	$3fb^{-1}$	$9 f b^{-1}$	$23 f b^{-1}$	$50 f b^{-1}$	$300 f b^{-1}$

Motivation

PQCD to predict CPV in B meson

> CPV can be predicted well in PQCD in B meson decays.

```
[Keum, Li, Sanda, 2000] [Lu, Ukai, Yang, 2000]
```

- ▶ W-exchange/annihilation diagrams are not suppressed, but have large contributions to CP asymmetry.
- More W-exchange diagrams included, PQCD is hopeful to predict correct CPV of b-baryon decays.
- The only prediction of b-baryon CPV by PQCD is given by [Lu, Wang, Zou, Ali, Kramer, 2009]

$$\langle P(p',s')|\bar{u}\gamma_{\mu}(1-\gamma_{5})b|\Lambda_{b}(p,s)\rangle = \overline{P}(p',s')(f_{1}\gamma_{\mu}-if_{2}\sigma_{\mu\nu}q^{\nu}+f_{3}q_{\mu})\Lambda_{b}(p,s) - \overline{P}(p',s')(g_{1}\gamma_{\mu}-ig_{2}\sigma_{\mu\nu}q^{\nu}+g_{3}q_{\mu})\gamma_{5}\Lambda_{b}(p,s).$$

Form factor f_1	Light-cone sum rule(2011)	Lattice(2015)	PQCD(2009)
	0.13	0.22	$2.2^{+0.08}_{-0.5} \times 10^{-3}$

$$\mathcal{M} = \bar{p}(p')[f_1 + f_2\gamma_5]\Lambda_b(p),$$

ū		Factorizable	Nonfactorizable
	$\overline{f_1(\Lambda_b \to p \pi)}$	$2.43 \times 10^{-10} - i4.39 \times 10^{-10}$	$-2.43 \times 10^{-9} - i2.05 \times 10^{-9}$
<i>u u</i>	$f_2(\Lambda_b \to p\pi)$ $f_1(\Lambda_b \to pK)$	$2.64 \times 10^{-10} - i6.54 \times 10^{-10} - 3.17 \times 10^{-10} - i1.22 \times 10^{-10}$	$-1.75 \times 10^{-9} - i1.20 \times 10^{-9}$ $-0.88 \times 10^{-9} + i0.54 \times 10^{-10}$
<i>d d</i>	$\frac{f_2(\Lambda_b \to pK)}{f_2(\Lambda_b \to pK)}$	$1.74 \times 10^{-10} - i1.96 \times 10^{-10}$	$-1.06 \times 10^{-9} + i1.67 \times 10^{-9}$
(T)			

Sildes from my report on HFCPV2021

Jia-Jie Han (韩佳杰) 南京师范大学&兰州大学 @HFCPV2021

One of diagrams for $\Lambda_b \to p$

In collaboration with Ya Li, Yue-Long Shen, Zhen-Jun Xiao and Fu-Sheng Yu

Table 4 Form factor $f_1(0)$ from various twist combinations of the Λ_b baryon and proton LCDAs. The first (second) theoretical errors of the total results come from the variations of the relevant parameters in the Λ_b baryon (proton) LCDAs

	Twist-3	Twist-4	Twist-5	Twist-6	Total
Exponential					
Twist-2	0.0007	-0.00007	-0.0005	-0.000003	0.0001
Twist-3 ⁺⁻	-0.0001	0.002	0.0004	-0.000004	0.002
Twist-3 ⁻⁺	-0.0002	0.0060	0.000004	0.00007	0.006
Twist-4	0.01	0.00009	0.25	0.0000007	0.26
Total	0.01	0.008	0.25	0.00007	$0.27 \pm 0.09 \pm 0.07$
$\Lambda_b \ u \ d$		$\begin{array}{c c} a6 & \bar{u} & \pi^{-} \\ \bar{u} & \bar{u} \\ \hline a7 & u \\ u & p \\ d \\ \end{array}$	$/K^{-} = \int_{0}^{1} d[$ $*\tilde{I}$ $*$	$x]d[x']dx_q \int d[\boldsymbol{b}]d$ $\widetilde{T}_H\left([x], [x'], [\boldsymbol{b}], $	$\mathcal{L}[\boldsymbol{b}']d\boldsymbol{b}_{q}\tilde{\phi}_{\Lambda_{b}}([x],[\boldsymbol{b}],$ $\mathcal{L}'], \frac{Q^{2}}{\mu^{2}}, \alpha_{s}(\mu^{2})$ $\mathcal{L}(x_{q},\boldsymbol{b}_{q},\mu^{2}) * St([x])$

One of diagrams for $\Lambda_b \rightarrow p\pi$, pK

Results

$\Lambda_b \to p\pi$	$ f_1 $	$\phi(f_1)^{\circ}$	$Real(f_1)$	$Imag(f_1)$	$ f_2 $	$\phi(f_2)^{\circ}$	$Real(f_2)$	$Imag(f_2)$
Т	1484	-39	1147	-942	3534	-38	2770	-2196
C_2	133	-16	128	-38	786	132	-531	580
E_2	196	32	166	104	24	69	8.6	23
В	101	-126	-60	-81	59	-141	-46	-37
$P_{QCD}^{C_1}$	149	156	-137	59	92	77	20	90
$P_{EW}^{C_1}$	7.1	-67	2.9	-6.6	20	-80	3.5	-20
$P_{QCD}^{C_2}$	81	175	-81	7.1	51	-2	51	-2.1
$P_{EW}^{C_2}$	1.4	114	-0.6	1.3	7.9	97	-0.9	7.9
$P_{QCD}^{E_1^u}$	17	-98	-2.3	-17	23	58	12	19
$P_{EW}^{E_1^u}$	1.2	-40	0.9	-0.8	3.1	-84	0.3	-3.1
$P_{QCD}^{E_1^d}$	14	-111	-5.1	-13	29	41	22	19
$P_{EW}^{E_1^d}$	0.6	-69	0.2	-0.6	0.8	27	0.7	0.4
$P_{QCD}^{E_2}$	14	-111	-5.1	-13	29	41	22	19
$P_{EW}^{E_2}$	0.6	-69	0.2	-0.6	0.8	27	0.7	0.4
P^B_{QCD}	6.1	-58	3.2	-5.2	1.9	-116	-0.9	-1.7
P^B_{EW}	0.9	-102	-0.2	-0.9	0.2	-72	0.1	-0.2

The magnitudes are in unit of 10^{-9} and strong phases are in degrees, without CKM matrix elements.

hierarchies among f_1 (with CKM) (Tree) $V_{ub}V_{ud}^* \sim \lambda^3$ (Penguin) $V_{tb}V_{td}^* \sim \lambda^3$ $|T| \gg |P_{QCD}^{C_1}| > |E_2| \ge |P_{QCD}^{C_2}| > |C_2| > |B| > |P_{QCD}^{E_1^u}| \approx |P_{QCD}^{E_1^d}| > |P_{EW}^{C_1}| > |P_{QCD}^{B}| > |P_{EW}^{C_2}| \approx |P_{EW}^{E_1^u}| \approx |P_{EW}^{B}| > |P_{EW}^{E_1^d}|$ hierarchies among f_2 (with CKM) $|T| \gg |C_2| \gg |P_{QCD}^{C_1}| > |E_2| \approx |P_{QCD}^{C_2}| > |P_{QCD}^{E_1^d}| > |B| \approx |P_{EW}^{C_1}| > |P_{EW}^{E_1^u}| > |P_{EW}^{E_1^u}| > |P_{EW}^{B_1^d}| > |P_{EW}^{B_1^d}| > |P_{EW}^{B_1^d}|$

2022/12/9

$\Lambda_b \to pK$	$ f_1 $	$\phi(f_1)^{\circ}$	$Real(f_1)$	$Imag(f_1)$	$ f_2 $	$\phi(f_2)^{\circ}$	$Real(f_2)$	$Imag(f_2)$
Т	1912	-34	1580	-1078	3821	-43	2772	-2631
E_2	237	38	187	145	36	74	10	35
$P_{QCD}^{C_1}$	159	157	-154	65	112	77	25	109
$P_{EW}^{C_1}$	11	-62	5.0	-9.3	25	-78	5.0	-24
$P_{QCD}^{E_1^u}$	25	-97	-3.0	-25	26	58	14	22
$P_{EW}^{E_1^u}$	1.5	-23	1.4	-0.6	3.6	-84	0.4	-3.6
$P_{QCD}^{E_1^d}$	34	-112	-13	-31	34	69	12	32
$P_{EW}^{E_1^d}$	0.6	-59	0.3	-0.5	0.8	67	0.3	0.7

The magnitudes are in unit of 10^{-9} and strong phases are in degrees, without CKM matrix elements.

hierarchies among f_1 (with CKM) (Tree) $V_{ub}V_{us}^* \sim \lambda^4$ (Penguin) $V_{tb}V_{ts}^* \sim \lambda^2$

 $|P_{QCD}^{C_1}| \gg |T| \gtrsim |P_{QCD}^{E_1^d}| > |P_{QCD}^{E_1^u}| > |P_{EW}^{C_1}| > |E_2| > |P_{EW}^{E_1^u}| > |P_{EW}^{E_1^d}|$

hierarchies among f_2 (with CKM)

 $|P_{QCD}^{C_1}| > |T| > |P_{QCD}^{E_1^d}| > |P_{QCD}^{E_1^u}| \approx |P_{EW}^{C_1}| > |P_{EW}^{E_1^u}| > |E_2| > |P_{EW}^{E_1^d}|$

> The same as hierarchies between topological diagrams of B meson decays [Cheng, Oh, 2011]

$f_1(\Lambda_b o p\pi)$	$\tau) = (-2.86^{+1.17+1.03}_{-0.96-1.12} - 6.42^{+2.37+1.9}_{-2.95-2.7})$	$^{9}_{6}i) imes 10^{-9},$
$f_2(\Lambda_b o p\pi)$	$\tau) = (-1.35^{+0.45+0.51}_{-0.58-0.67} - 7.96^{+2.64+2.44}_{-3.04-3.44})$	$^{2}_{4}i) imes 10^{-9},$
$f_1(\Lambda_b o pK)$	$K = (6.36^{+1.71+2.10}_{-1.46-2.29} - 1.67^{+0.43+0.65}_{-0.52-0.47}i)$	$) \times 10^{-9},$
$f_2(\Lambda_b o pK)$	$X = (-3.40^{+0.88+1.36}_{-0.98-1.54} - 8.47^{+2.28+3.2}_{-3.13-3.6})$	$_{6}^{3}i) imes 10^{-9}.$
$R_{\pi K} \equiv \frac{\mathcal{B}r(\Lambda_b \to p\pi)}{\mathcal{B}r(\Lambda_b \to pK)}$	$A_{CP}^{dir}(\Lambda_b o pM) \equiv rac{\mathcal{B}r(\Lambda_b o pM)}{\mathcal{B}r(\Lambda_b o pM)}$	$\frac{\rightarrow pM) - \mathcal{B}r(\bar{\Lambda}_b \rightarrow \bar{p}\bar{M})}{\rightarrow pM) + \mathcal{B}r(\bar{\Lambda}_b \rightarrow \bar{p}\bar{M})}$
	PQCD(this work)	Experiment
$\mathcal{B}r(\Lambda_b o p\pi)$	PQCD(this work) $(27.3^{+26.2}_{-18.5}) \times 10^{-6}$	Experiment $(4.5 \pm 0.8) \times 10^{-6}$
$\mathcal{B}r(\Lambda_b o p\pi)$ $\mathcal{B}r(\Lambda_b o pK)$	PQCD(this work) $(27.3^{+26.2}_{-18.5}) \times 10^{-6}$ $(29.4^{+34.3}_{-19.6}) \times 10^{-6}$	Experiment $(4.5 \pm 0.8) \times 10^{-6}$ $(5.4 \pm 1.0) \times 10^{-6}$
$egin{aligned} \mathcal{B}r(\Lambda_b o p\pi) \ \mathcal{B}r(\Lambda_b o pK) \ R_{\pi K}(\Lambda_b) \end{aligned}$	PQCD(this work) $(27.3^{+26.2}_{-18.5}) \times 10^{-6}$ $(29.4^{+34.3}_{-19.6}) \times 10^{-6}$ $0.93^{+0.02}_{-0.20}$	Experiment $(4.5 \pm 0.8) \times 10^{-6}$ $(5.4 \pm 1.0) \times 10^{-6}$ 0.82 ± 0.12
$egin{aligned} \mathcal{B}r(\Lambda_b o p\pi) \ \mathcal{B}r(\Lambda_b o pK) \ R_{\pi K}(\Lambda_b) \ A^{dir}_{CP}(\Lambda_b o p\pi) \end{aligned}$	PQCD(this work) $(27.3^{+26.2}_{-18.5}) \times 10^{-6}$ $(29.4^{+34.3}_{-19.6}) \times 10^{-6}$ $0.93^{+0.02}_{-0.20}$ $(-3.63^{+3.41}_{-0.07})\%$	Experiment $(4.5 \pm 0.8) \times 10^{-6}$ $(5.4 \pm 1.0) \times 10^{-6}$ 0.82 ± 0.12 $(-2.5 \pm 2.9)\%$

SU(3) breaking effects

$$\begin{split} \left| \frac{T}{T'} \right|_{f_1} = 0.78, \quad \left| \frac{T}{T'} \right|_{f_2} = 0.92, \quad \left| \frac{P_{QCD}^{C_1}}{P_{QCD}^{C_{1'}}} \right|_{f_1} = 0.84, \quad \left| \frac{P_{QCD}^{C_1}}{P_{QCD}^{C_{1'}}} \right|_{f_2} = 0.82, \quad \left| \frac{P_{EW}^{C_1}}{P_{EW}^{C_{1'}}} \right|_{f_1} = 0.85, \quad \left| \frac{P_{EW}^{C_1}}{P_{EW}^{C_{1'}}} \right|_{f_2} = 0.80, \\ \left| \frac{E_2}{E'_2} \right|_{f_1} = 0.82, \quad \left| \frac{E_2}{E'_2} \right|_{f_2} = 0.87, \quad \left| \frac{P_{QCD}^{E_1^u}}{P_{QCD}^{E_{1'}}} \right|_{f_1} = 0.78, \quad \left| \frac{P_{QCD}^{E_1^u}}{P_{QCD}^{E_{1'}}} \right|_{f_2} = 0.88, \quad \left| \frac{P_{EW}^{E_1^u}}{P_{EW}^{E_{1'}}} \right|_{f_1} = 0.80, \quad \left| \frac{P_{EW}^{E_1^u}}{P_{EW}^{E_{1'}}} \right|_{f_2} = 0.86, \\ \left| \frac{P_{QCD}^{E_1^u}}{P_{QCD}^{E_{1'}}} \right|_{f_1} = 0.82, \quad \left| \frac{P_{QCD}^{E_1^u}}{P_{QCD}^{E_{1'}}} \right|_{f_2} = 0.85, \quad \left| \frac{P_{EW}^{E_1^u}}{P_{EW}^{E_{1'}}} \right|_{f_1} = 0.81, \quad \left| \frac{P_{EW}^{E_1^d}}{P_{EW}^{E_{1'}}} \right|_{f_2} = 0.85, \end{split}$$

> The SU(3) breaking effects are consistent with the B meson cases. [Cheng, Oh, 2011]

Table 5: The parameters $f_1(f_2)$ for the topology T_f from various twist combinations of the Λ_b baryon and proton LCDAs. Only the central values are listed for simplicity.

	twist-3	twist-4	twist-5	twist-6
$\Lambda_b o p\pi$				
twist-2	6.9(9.6)	-0.51(0.72)	-4.6(-0.64)	-0.02(0.03)
$twist-3^{+-}$	-0.48(0.68)	22.3(31.2)	0.14(-0.21)	-0.25(-0.37)
$twist-3^{-+}$	-0.80(1.1)	10.1(14.3)	-0.24(0.33)	0.59(0.84)
twist-4	72.1(99.7)	37.5(-52.4)	1254(1770)	0.003(-0.005)
$\Lambda_b \to pK$				
twist-2	8.77(12.4)	-0.67(0.95)	-5.72(-8.11)	-0.03(0.05)
$ ext{twist-}3^{+-}$	-0.57(0.82)	28.4(41.2)	0.20(-0.29)	-0.34(-0.49)
$twist-3^{-+}$	-0.99(1.36)	14.3(19.2)	-0.28(0.42)	0.75(1.10)
twist-4	91.1(123)	45.8(-65.8)	1570(2214)	0.04(-0.05)

Table 6: The same as Table 5 but for the topology T_{nf} .

	twist-3	twist-4	twist-5	twist-6
$\Lambda_b \rightarrow p\pi$ twist-2 twist-3 ⁺⁻ twist-3 ⁻⁺	-508-1093i(-1753-1546i) -112-71i(-531+87i) 632+419i(3150-571i) 108-70i(-252-87i)	-73+45i(-300-46i) -54+29i(-323+45i) -32-104i(923-149i)	$\begin{array}{c} 0.34\text{-}3.2\mathrm{i}(\text{-}29\text{-}6.4\mathrm{i})\\ 33\text{+}23\mathrm{i}(182\text{-}31\mathrm{i})\\ 29\text{+}21\mathrm{i}(80\text{-}29\mathrm{i})\\ 10.071\mathrm{i}(12\text{+}15\mathrm{i})\end{array}$	$\begin{array}{c} 0.88 \text{-} 0.80 \text{i} (-0.66 + 1.6 \text{i}) \\ 0.014 + 0 \text{i} (-0.03 \text{-} 0.005 \text{i}) \\ -0.031 \text{-} 0.004 \text{i} (-0.02 \text{-} 0.001 \text{i}) \\ 0.21 0.21 \text{i} (-1.5 \text{-} 0.46 \text{i}) \end{array}$
twist-4	108-701(-253-871)	-277-1351(-227+1361)	-10-0.711(-1.3+1.51)	-0.31-0.311(-1.5-0.461)
$\Lambda_b \rightarrow pK$ twist-2 twist-3 ⁺⁻ twist-3 ⁻⁺ twist-4	-547-1201i(-2074-1849i) -126-76i(-649+97i) 700+427i(316-64) 115-71i(-290-118i)	-84+48i(-364-49i) -57+42.4i(-349+52) -27.8-114i(1030-156i) -322-129i(-259+166i)	$\begin{array}{c} 0.39\text{-}4.1\mathrm{i}(\text{-}31\text{-}7.0\mathrm{i})\\ 33\text{+}27\mathrm{i}(217\text{-}39\mathrm{i})\\ 34\text{+}25\mathrm{i}(97\text{-}36.4\mathrm{i})\\ \text{-}12\text{-}0.94\mathrm{i}(\text{-}1.4\text{+}1.66\mathrm{i}) \end{array}$	$\begin{array}{c} -1.0\text{-}0.9\mathrm{i}(\text{-}0.7\text{+}1.9\mathrm{i})\\ 0.015\text{+}0.002\mathrm{i}(\text{-}0.035\text{-}0.005\mathrm{i})\\ -0.04\text{-}0.01\mathrm{i}(\text{-}0.02\text{-}0.002\mathrm{i})\\ -0.35\text{-}0.52\mathrm{i}(\text{-}1.63\text{-}0.61\mathrm{i})\end{array}$

Table 8: The same as Table.5 but for the topology $P_{QCD}^{C_1}$.

	twist-3	twist-4	twist-5	twist-6
$\Lambda_b o p\pi$				
twist-2	-2.3+47i(3.3+60i)	-1.5-0.47i(3.3+1.6i)	0.36 + 0.002i(0.12 + 0.54i)	0.03-0.02i(-0.05-0.13i)
$twist-3^{+-}$	-1.2+1.1i(-3.3-2.2i)	-0.68+6.2i(4.3-15i)	-0.04+0.08i(2.6+2.3i)	0.02-0.01i(-0.01-0.01i)
$twist-3^{-+}$	0.89-14i(0.41+21i)	-0.025+4.7i(3.6+2.2i)	-0.15+0.26i(-0.22+2.42i)	-0.05+0.005i(0.015+0.01i)
twist-4	-2.4+1.1i(2.3+13i)	-1.6+5.1i(-8.0+3.3i)	-114 + 0.1i(9.1 - 0.51i)	-0.11 + 0.05i(0.31 + 0.07i)
$\Lambda_h \to pK$				
twist-2	-2.9+59.5i(4.5+73i)	-1.84-0.41i(4.2+2.1i)	0.68 - 0.01i(0.13 + 0.74i)	0.03-0.02i(-0.67-0.21i)
$twist-3^{+-}$	-1.46+1.36i(-3.9-2.5i)	-0.8+8.0i(6.0-21.2i)	-0.06+0.1i(3.3+2.9i)	0.03-0.01i(-0.01-0.01i)
$twist-3^{-+}$	1.1-17.0i(0.48+27)	-0.03+5.81i(4.5+2.5i)	-0.16+0.36i(-0.3+3.3i)	-0.07 + 0.007i(0.02 + 0.01i)
twist-4	-3.0+1.24i(2.7+18.1i)	-2.24+5.79i(-11+4.6i)	-142+0.15i(11-0.69i)	-0.16 + 0.07i(0.41 + 0.01i)

Summary

- Baryon physics have lots of opportunities.
- > PQCD approach applies well to b-baryon decays.
- Contributions from high twist LCDAs are important.
- > Our results suffer from large uncertainties due to non-perturbative inputs of baryons LCDAs
- More researches of high-twist LCDAs of baryons are urgently needed

 $M_W(80GeV) \gg M_b(5GeV) \gg \sqrt{M_b\Lambda_{QCD}}(1.5GeV) \gg \Lambda_{QCD}(0.5GeV)$

 $M_{B\to\pi} = M_1(M_W, \mu_1) * M_2(\mu_1, M_b, \mu_2) * M_3(\mu_2, \Lambda_{QCD})$

Under collinear factorization:

$$M(Q^{2}) = \int_{0}^{1} dx_{1} dx_{2} \phi_{B}(x_{2}, \mu^{2}) * T_{H}\left(x_{1}, x_{2}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}(\mu^{2})\right) * \phi_{\pi}(x_{1}, \mu^{2})$$
1. propagators $\sim \frac{1}{x_{1}x_{2}Q^{2}} \rightarrow \infty$ when $x \rightarrow 0$
2. $\alpha_{s}(x_{1}x_{2}Q^{2}) \rightarrow \infty$ when $x \rightarrow 0$

 $k_{T} \text{ factorization: retain transverse momentum of parton, propagator} \sim \frac{1}{x_{1}x_{2}Q^{2}+k_{T}^{2}}$ $M(Q^{2}) = \int_{0}^{1} dx_{1}dx_{2} \int d\mathbf{k}_{1T}d\mathbf{k}_{2T}\phi_{B}(x_{2},\mathbf{k}_{2T},\mu^{2}) * T_{H}\left(x_{1},x_{2},\mathbf{k}_{2T},\mathbf{k}_{1T},\frac{Q^{2}}{\mu^{2}},\alpha_{s}(\mu^{2})\right) * \phi_{\pi}(x_{1},\mathbf{k}_{1T},\mu^{2})$

 $\succ \quad \text{Fourier tranfer over } k_T$

$$M(Q^{2}) = \int_{0}^{1} dx_{1} dx_{2} \int d\mathbf{k}_{1T} d\mathbf{k}_{2T} \int \frac{d\mathbf{b}_{1}}{(2\pi)^{2}} \int d\mathbf{k}_{1T} d\mathbf{k}_{2T} \exp[-i(k_{1T}b_{1}+k_{2T}b_{2})]\phi_{B}(x_{2},\mathbf{k}_{2T},\mu^{2}) * T_{H}\left(x_{1},x_{2},\mathbf{k}_{2T},\mathbf{k}_{1T},\frac{Q^{2}}{\mu^{2}},\alpha_{s}(\mu^{2})\right) * \phi_{\pi}(x_{1},\mathbf{k}_{1T},\mu^{2})$$

$$= \int_{0}^{1} dx_{1} dx_{2} \int d\mathbf{b}_{1} d\mathbf{b}_{2} \tilde{\phi}_{B}(x_{2},\mathbf{b}_{2},\mu^{2}) * \tilde{T_{H}}\left(x_{1},x_{2},\mathbf{b}_{2},\mathbf{b}_{1},\frac{Q^{2}}{\mu^{2}},\alpha_{s}(\mu^{2})\right) * \tilde{\phi}_{\pi}(x_{1},\mathbf{k}_{1T},\mu^{2})$$

$$\Rightarrow \text{Resum double-log to get Sudakov factors} \qquad \tilde{\phi}_{\pi}(x_{1},\mathbf{b}_{1},\mu^{2}) = \phi_{\pi}(x_{1},b_{1})\exp[-S(\mu,b_{1})]$$

$$= \int_{0}^{1} dx_{1} dx_{2} \int d\mathbf{b}_{1} d\mathbf{b}_{2} \tilde{\phi}_{B}(x_{2},\mathbf{b}_{2},\mu^{2}) * \tilde{T_{H}}\left(x_{1},x_{2},\mathbf{b}_{2},\mathbf{b}_{1},\frac{Q^{2}}{\mu^{2}},\alpha_{s}(\mu^{2})\right) * \tilde{\phi}_{\pi}(x_{1},\mathbf{b}_{1},\mu^{2}) * S_{t}(x_{1},x_{2})$$

> PQCD in b-baryon two-body decays: c_1^1

$$M = \int_{0}^{-} d[x]d[x']dx_{q} \int d[\mathbf{b}]d[\mathbf{b}']d\mathbf{b}_{q}\tilde{\phi}_{\Lambda_{b}}([x], [\mathbf{b}], \mu^{2})$$

* $\widetilde{T_{H}}\left([x], [x'], [\mathbf{b}], [\mathbf{b}'], \frac{Q^{2}}{\mu^{2}}, \alpha_{s}(\mu^{2})\right) * \tilde{\phi}_{p}([x'], [\mathbf{b}'], \mu^{2})\tilde{\phi}_{M}(x_{q}, \mathbf{b}_{q}, \mu^{2}) * S_{t}([x], [x'])$

LCDAs of baryons

$\Lambda_b LCDA$

[P.Ball, V.M.Braun, E.Gardi (2008)] [G.Bell, T.Feldmann, Yu-Ming Wang, M.W.Y.Yip (2013)] [Yu-Ming Wang, Yue-Long Shen (2016)]

> introduce the general light-cone hadronic matrix element of Λ_b baryon

$$\Phi_{\Lambda_{b}}^{\alpha\beta\delta}(t_{1},t_{2}) \equiv \epsilon_{ijk} \langle 0|[u_{i}^{T}(t_{1}\bar{n})]_{\alpha}[0,t_{1}\bar{n}][d_{j}(t_{2}\bar{n})]_{\beta}[0,t_{2}\bar{n}][b_{k}(0)]_{\delta}|\Lambda_{b}(v)\rangle
= \frac{1}{4} \Big\{ f_{\Lambda_{b}}^{(1)}(\mu)[\tilde{M}_{1}(v,t_{1},t_{2})\gamma_{5}C^{T}]_{\beta\alpha} + f_{\Lambda_{b}}^{(2)}(\mu)[\tilde{M}_{2}(v,t_{1},t_{2})\gamma_{5}C^{T}]_{\beta\alpha} \Big\} [\Lambda_{b}(v)]_{\delta}$$
(23)

performing the Fourier transformation and including the NLO terms off the light-cone leads to the momentum space light-cone projector

$$M_{2}(\omega_{1},\omega_{2}) = \frac{\hbar}{\sqrt{2}}\psi_{2}(\omega_{1},\omega_{2}) + \frac{\hbar}{\sqrt{2}}\psi_{4}(\omega_{1},\omega_{2})$$
$$M_{1}(\omega_{1},\omega_{2}) = \frac{\hbar}{4}\psi_{3}^{+-}(\omega_{1},\omega_{2}) + \frac{\hbar}{4}\psi_{3}^{-+}(\omega_{1},\omega_{2})$$

➢ G.Bell, T.Feldmann, Yu-Ming Wang, M.W.Y.Yip (2013)

$$\begin{split} \psi_{2}(\omega_{1},\omega_{2}) &= \frac{\omega_{1}\omega_{2}}{\omega_{0}^{4}} e^{-(\omega_{1}+\omega_{2})/\omega_{0}}, \\ \psi_{3}^{+-}(\omega_{1},\omega_{2}) &= \frac{2\omega_{1}}{\omega_{0}^{3}} e^{-(\omega_{1}+\omega_{2})/\omega_{0}}, \\ \psi_{3}^{-+}(\omega_{1},\omega_{2}) &= \frac{2\omega_{2}}{\omega_{0}^{3}} e^{-(\omega_{1}+\omega_{2})/\omega_{0}}, \\ \psi_{4}(\omega_{1},\omega_{2}) &= \frac{1}{\omega_{0}^{2}} e^{-(\omega_{1}+\omega_{2})/\omega_{0}}. \end{split}$$

LCDAs of baryons

Proton LCDA

[V.M.Braun, R.J.Fries, N.Mahnke, E.Stein (2001)]

$$\begin{split} \bar{\Phi}^{\alpha\beta\gamma}_{proton} \equiv & \langle \mathcal{P}(p') | \bar{u}^{i}_{\alpha}(0) \bar{u}^{j}_{\beta}(z_{1}) \bar{d}^{k}_{\gamma}(z_{2}) | 0 \rangle \\ = \frac{1}{4} \{ S_{1} m_{p} C_{\beta\alpha}(\bar{N}^{+}\gamma_{5})_{\gamma} + S_{2} m_{p} C_{\beta\alpha}(\bar{N}^{-}\gamma_{5})_{\gamma} + P_{1} m_{p} (C\gamma_{5})_{\beta\alpha} \bar{N}^{+}_{\gamma} + P_{2} m_{p} (C\gamma_{5})_{\beta\alpha} \bar{N}^{-}_{\gamma} + V_{1} (CP)_{\beta\alpha}(\bar{N}^{+}\gamma_{5})_{\gamma} \\ & + V_{2} (CP)_{\beta\alpha}(\bar{N}^{-}\gamma_{5})_{\gamma} + V_{3} \frac{m_{p}}{2} (C\gamma_{\perp})_{\beta\alpha}(\bar{N}^{+}\gamma_{5}\gamma^{\perp})_{\gamma} + V_{4} \frac{m_{p}}{2} (C\gamma_{\perp})_{\beta\alpha}(\bar{N}^{-}\gamma_{5}\gamma^{\perp})_{\gamma} + V_{5} \frac{m_{p}^{2}}{2P_{z}} (Cz)_{\beta\alpha}(\bar{N}^{+}\gamma_{5})_{\gamma} \\ & + V_{6} \frac{m_{p}^{2}}{2P_{z}} (Cz)_{\beta\alpha}(\bar{N}^{-}\gamma_{5})_{\gamma} + A_{1} (C\gamma_{5}P)_{\beta\alpha}(\bar{N}^{+})_{\gamma} + A_{2} (C\gamma_{5}P)_{\beta\alpha}(\bar{N}^{-})_{\gamma} + A_{3} \frac{m_{p}}{2} (C\gamma_{5}\gamma_{\perp})_{\beta\alpha}(\bar{N}^{+}\gamma^{\perp})_{\gamma} \\ & + A_{4} \frac{m_{p}}{2} (C\gamma_{5}\gamma_{\perp})_{\beta\alpha}(\bar{N}^{-}\gamma^{\perp})_{\gamma} + A_{5} \frac{m_{p}^{2}}{2P_{z}} (C\gamma_{5}z)_{\beta\alpha}(\bar{N}^{+})_{\gamma} + A_{6} \frac{m_{p}^{2}}{2P_{z}} (C\gamma_{5}z)_{\beta\alpha}(\bar{N}^{-})_{\gamma} - T_{1} (iC\sigma_{\perp P})_{\beta\alpha}(\bar{N}^{+}\gamma_{5}\gamma^{\perp})_{\gamma} \\ & - T_{2} (iC\sigma_{\perp P})_{\beta\alpha}(\bar{N}^{-}\gamma_{5}\gamma^{\perp})_{\gamma} - T_{3} \frac{m_{p}}{P_{z}} (iC\sigma_{P_{z}})_{\beta\alpha}(\bar{N}^{+}\gamma_{5})_{\gamma} - T_{4} \frac{m_{p}}{P_{z}} (iC\sigma_{zP})_{\beta\alpha}(\bar{N}^{-}\gamma_{5})_{\gamma} - T_{5} \frac{m_{p}^{2}}{2P_{z}} (iC\sigma_{\perp z})_{\beta\alpha}(\bar{N}^{+}\gamma_{5}\gamma^{\perp})_{\gamma} \\ & - T_{6} \frac{m_{p}^{2}}{2P_{z}} (iC\sigma_{\perp z})_{\beta\alpha}(\bar{N}^{-}\gamma_{5}\gamma^{\perp})_{\gamma} + T_{7} \frac{m_{p}}{2} (C\sigma_{\perp \perp'})_{\beta\alpha}(\bar{N}^{+}\gamma_{5}\sigma^{\perp \perp'})_{\gamma} + T_{8} \frac{m_{p}}{2} (C\sigma_{\perp \perp'})_{\beta\alpha}(\bar{N}^{-}\gamma_{5}\sigma^{\perp \perp'})_{\gamma} \} \end{split}$$

TABLE I: Twist classification of proton distribution amplitudes.					
	twist-3	twist-4	twist-5	twist-6	
Vector	V_1	V_2, V_3	V_4, V_5	V_6	
Pseudo-Vector	A_1	A_{2}, A_{3}	A_{4}, A_{5}	A_6	
Tensor	T_1	T_2, T_3, T_7	T_4, T_5, T_8	T_6	
Scalar		S_{1}	S 2		
Pesudo-Scalar		P_1	P_2		

Light meson LCDA Ball, 2005, 2006 $\Phi_{\pi}(p,x,\zeta) \equiv \frac{i}{\sqrt{2N_{c}}} \gamma_{5} \left[\not p \phi_{\pi}^{A}(x) + m_{0}^{\pi} \phi_{\pi}^{P}(x) + \zeta m_{0}^{\pi}(\not p / - 1) \phi_{\pi}^{T}(x) \right].$ $\phi^{A}_{\pi(K)}(x) = \frac{f_{\pi(K)}}{2\sqrt{2N_{*}}} 6x(1-x) \left[1 + a_{1}^{\pi(K)}C_{1}^{3/2}(2x-1) + a_{2}^{\pi(K)}C_{2}^{3/2}(2x-1) \right]$ $+a_4^{\pi(K)}C_4^{3/2}(2x-1)$], $\phi^P_{\pi(K)}(x) = \frac{f_{\pi(K)}}{2\sqrt{2N_*}} \left[1 + \left(30\eta_3 - \frac{5}{2}\rho^2_{\pi(K)} \right) C_2^{1/2}(2x-1) \right]$ $-3\left\{\eta_{3}\omega_{3}+\frac{9}{20}\rho_{\pi(K)}^{2}(1+6a_{2}^{\pi(K)})\right\}C_{4}^{1/2}(2x-1)\right],$ $\phi_{\pi(K)}^{T}(x) = \frac{f_{\pi(K)}}{2\sqrt{2N_{*}}} (1-2x) [1$ $+6\left(5\eta_{3}-\frac{1}{2}\eta_{3}\omega_{3}-\frac{7}{20}\rho_{\pi(K)}^{2}-\frac{3}{5}\rho_{\pi(K)}^{2}a_{2}^{\pi(K)}\right)\left(1-10x+10x^{2}\right)\right]$

$$\begin{split} C_1^{3/2}(t) &= 3t, \\ C_2^{1/2}(t) &= \frac{1}{2} \left(3t^2 - 1 \right), \quad C_2^{3/2}(t) = \frac{3}{2} \left(5t^2 - 1 \right), \\ C_4^{1/2}(t) &= \frac{1}{8} \left(3 - 30t^2 + 35t^4 \right), \quad C_4^{3/2}(t) = \frac{15}{8} \left(1 - 14t^2 + 21t^4 \right) . \\ a_1^{\pi} &= 0, \quad a_2^{\pi,K} = 0.25 \pm 0.15, \quad a_4^{\pi} = -0.015, \quad a_1^K = 0.06, \\ \rho_{\pi} &= m_{\pi}/m_0^{\pi}, \quad \rho_K = m_K/m_0^K, \quad \eta_3^{\pi,K,\eta} = 0.015, \quad \omega_3^{\pi,K,\eta} = -3, \\ m_0^{\pi} = 1.4 \pm 0.1 \text{ GeV} , \quad m_0^K = 1.6 \pm 0.1 \text{ GeV} \qquad \rho_{\pi(K)} = m_{\pi(K)}/m_0^{\pi(K)} \end{split}$$

0 10

Topologies of $\Lambda_b \rightarrow p\pi, pK$

Feynman diagrams E₂ topology

