

Studying D meson decays with the SU(3) flavor symmetry/breaking

Ru-Min Wang

 $D \rightarrow P / V / S \ell^+ v_{\ell}$: Ru-Min Wang, Yue-Xin Liu, Chong Hua, Jin-Huan Sheng, Yuan-Guo Xu

 $D \rightarrow P_1 P_2 \ell^+ v_\ell$: Ru-Min Wang, Yi-Jie Zhang, Yi Qiao, Xiao-Dong Cheng, Yuan-Guo Xu

JiangXi Normal University

第十九届重味物理和CP破坏研讨会

1. Motivation

2. Three body semileptonic charm decays $D \rightarrow P/V/S\ell^+ v_\ell$

3. Four body semileptonic charm decays $D \rightarrow P_1 P_2 \ell^+ \nu_\ell$

4. Conclusion

✓ Many exclusive $c \rightarrow s / d\ell^+ v_\ell$ decays have been well measured.

many $D \to P/V\ell^+ v_\ell$, one $D_s^+ \to f_0(980)e^+ v_e$, some $D \to P_1 P_2 \ell^+ v_\ell$

- \checkmark A large number of charmed hadrons are produced at the LHC, **BESIII** and Belle-II.
- \checkmark Theoretical calculations of the form factors
 - $\forall P \to P / V \ell^+ \nu_{\ell}$
 - $: D \to S\ell^+\nu_{\ell}, D \to P_1P_2\ell^+\nu_{\ell} (D \to \pi\pi\ell \nu, \pi K\ell \nu, \eta\pi\ell \nu)$
- \checkmark Symmetries (for an example, SU(3) flavor symmetry) provide very important information for particle physics. 3

SU(3) flavor symmetry approach

✓ Irreducible representation approach

Topological diagram approach

Advantage: Independent of the detailed

dynamics (Don't need calculate the form factors).

 Disadvantage: it can not determine the sizes of the amplitudes by itself.

Meson decays with the SU(3) flavor symmetry

baryons decays	charmed mesons	bottom mesons
$B/D \rightarrow M_1M_2$	 Hai-Yang Cheng et. al., PRD 86, 014014 (2012); PRD 93, 114010 (2016) Xiao-Gang He, Wei Wang et al., EPJC 80, 359 (2020); CPC 42, 103108 (2018). D.Pirtskhalava, PLB 712, 81 (2012). 	 Si-Hong Zhou, et al, PRD 92, 094016 (2015); EPJC 77 (2017) 2, 125; PRD 92, 094016 (2015). Hai-Yang Cheng et. al., JHEP 09, 024 (2011); PRD 91, 014011 (2015). Xiao-Gang He, Wei Wang et al., EPJC 80, 359 (2020); CPC 42, 103108 (2018).; PRD 93, 114002 (2016); JHEP 08, 065 (2013); PRD 69, 074002 (2004); PRD 64,034002(2001); EPJC 9, 443 (1999); PRL 75, 1703 (1995).
$B/D \to M_1 M_2 M_3$		 Si-Hong Zhou, , PRD 104, 116012 (2021). 2
$ \begin{array}{c} B / D \to M \ell \nu \\ B / D \to M_1 M_2 \ell \nu \end{array} $		
$B / D \to M_1 M_2 \ell^+ \ell^-$		

1. Motivation

2. Three body semileptonic charm decays $D \rightarrow P/V/S\ell^+\nu_\ell$

3. Four body semileptonic charm decays $D \rightarrow P_1 P_2 \ell^+ v_\ell$

4. Conclusion

2. Three body semileptonic decays

2.1
$$D \rightarrow P\ell^+ \nu$$
 decays

2.2
$$D \rightarrow V\ell^+ \nu$$
 decays

2.3 $D \rightarrow S \ell^+ \nu$ decays

1. Motivation

2. Three body semileptonic charm decays $D \rightarrow P/V/S\ell^+ v_\ell$

3. Four body semileptonic charm decays $D \rightarrow P_1 P_2 \ell^+ v_\ell$

4. Conclusion

3. Four body semileptonic decays

3.1 Non-resonant $D \rightarrow P_1 P_2 \ell^+ \nu_\ell$ Decays

3.2 Decays $D \rightarrow P_1 P_2 \ell^+ \nu_\ell$ with light scalar resonances

3.3 Decays $D \rightarrow P_1 P_2 \ell^+ \nu_\ell$ with vector resonances

3.4 Total branching ratios of decays $D \rightarrow P_1 P_2 \ell^+ \nu_\ell$

Mesons M_{j}^{i} i = 1, 2, 3 for u, d, s

,

$$D_i = \left(D^0(c\bar{u}), \ D^+(c\bar{d}), \ D^+_s(c\bar{s}) \right)$$

$$P = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} + \frac{\eta_{1}}{\sqrt{3}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} + \frac{\eta_{1}}{\sqrt{3}} & K^{0} \\ K^{-} & \overline{K}^{0} & -\frac{2\eta_{8}}{\sqrt{6}} + \frac{\eta_{1}}{\sqrt{3}} \end{pmatrix},$$
$$V = \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega_{8}}{\sqrt{6}} + \frac{\omega_{1}}{\sqrt{3}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega_{8}}{\sqrt{6}} + \frac{\omega_{1}}{\sqrt{3}} & K^{*0} \\ K^{*-} & \overline{K}^{*0} & -\frac{2\omega_{8}}{\sqrt{6}} + \frac{\omega_{1}}{\sqrt{3}} \end{pmatrix}$$

$\left(\phi \right)$	_	$\left(\cos \theta_V \right)$	$-sin\theta_V$) (ω_8	
$\left(\omega \right)$	_	$\langle sin \theta_V$	$cos \theta_V$) (ω_1	,

Scalar with two quark picture:

$$S = \begin{pmatrix} \frac{a_{0}^{0}}{\sqrt{2}} + \frac{\sigma}{\sqrt{2}} & a_{0}^{+} & K_{0}^{+} \\ a_{0}^{-} & -\frac{a_{0}^{0}}{\sqrt{2}} + \frac{\sigma}{\sqrt{2}} & K_{0}^{0} \\ K_{0}^{-} & \overline{K}_{0}^{0} & f_{0} \end{pmatrix}$$
$$\begin{pmatrix} f_{0}(980) \\ f_{0}(500) \end{pmatrix} = \begin{pmatrix} \cos\theta_{S} & \sin\theta_{S} \\ -\sin\theta_{S} & \cos\theta_{S} \end{pmatrix} \begin{pmatrix} f_{0} \\ \sigma \end{pmatrix}$$

Scalar with four quark picture:

$$\sigma = u\bar{u}d\bar{d}, \qquad f_0 = (u\bar{u} + d\bar{d})s\bar{s}/\sqrt{2},$$

$$a_0^0 = (u\bar{u} - d\bar{d})s\bar{s}/\sqrt{2}, \qquad a_0^+ = u\bar{d}s\bar{s}, \qquad a_0^- = d\bar{u}s\bar{s},$$

$$K_0^+ = u\bar{s}d\bar{d}, \qquad K_0^0 = d\bar{s}u\bar{u}, \qquad \bar{K}_0^0 = s\bar{d}u\bar{u}, \qquad K_0^+ = s\bar{u}d\bar{d},$$

$$S_{jm}^{im} \qquad \left(\begin{array}{c} f_0(980) \\ f_0(500) \end{array}\right) = \left(\begin{array}{c} \cos\phi_S & \sin\phi_S \\ -\sin\phi_S & \cos\phi_S \end{array}\right) \left(\begin{array}{c} f_0 \\ \sigma \end{array}\right)$$

$$10$$

5.1 Non-resonant $D \rightarrow P_1 P_2 \ell^+ \nu_{\ell}$ Decays SU(3) flavor symmetry amplitudes: $A(D \to P_1 P_2 \ell^+ \nu_\ell)_N = c_{10} D_i P_j^i P_k^j H^k + c_{20} D_i P_j^i H^j P_k^k + c_{30} D_i H^i P_k^j P_j^k + c_{40} D_i H^i P_k^k P_j^j,$ SU(3) flavor breaking amplitudes: $\Delta A(D \to P_1 P_2 \ell^+ \nu_\ell)_N = c_{11} D_i W_a^i P_j^a P_k^j H^k + c_{12} D_i P_j^i W_a^j P_k^a H^k + c_{13} D_i P_j^i P_k^j W_a^k H^a$ $+ c_{21}D_iW_a^iP_i^aH^jP_k^k + c_{22}D_iP_i^iW_a^jH^aP_k^k$ $+ c_{31}D_iW_a^iH^aP_k^jP_i^k + c_{32}D_iH^iP_k^jW_a^kP_i^a$ $+ c_{41} D_i W_a^i H^a P_k^k P_i^j,$

Branching ratios: $\frac{d\mathcal{B}(D \to P_1 P_2 \ell^+ \nu)_N}{dq^2 dk^2} = \frac{1}{2} \tau_D |\mathcal{N}|^2 \beta_\ell (3 - \beta_\ell) |F_A|^2,$

$$\begin{aligned} |\mathcal{N}|^2 &= G_F^2 |V_{cq}|^2 \frac{\beta_\ell q^2 \sqrt{\lambda(m_D^2, q^2, k^2)}}{3 \cdot 2^{10} \pi^5 m_D^3} \quad \text{with} \quad \beta_\ell = 1 - \frac{m_\ell^2}{q^2}, \\ |F_A|^2 &= |F_0|^2 + \frac{2}{3} (|F_{\parallel}|^2 + |F_{\perp}|^2) + \frac{3m_\ell^2}{q^2(3 - \beta_\ell)} |F_t|^2, \end{aligned}$$

Decay Amplitudes

TABLE 1: The amplitudes including the SU(3) flavor symmetry and the SU(3) flavor breaking contributions for the $D \rightarrow P_1 P_2 \ell^+ \nu_l$ decays. $C_1 \equiv c_{10} + c_{11} + c_{12} - 2c_{13}$, $C_2 \equiv c_{20} + c_{21} - 2c_{22}$, $C_3 \equiv c_{30} - 2c_{31}$, $C_4 \equiv c_{40} - 2c_{41}$, and $[\vec{C}^{''}]_R$ denotes the contributions come from the decays with R resonances.

Decay modes	Non-resonant decay amplitudes	Scalar resonant ones	Vector resonant ones
$c \rightarrow s \ell^+ \nu_\ell$:			
$D^0 \rightarrow \pi^- \overline{K}^0 \ell^+ \nu_\ell$	C_1	$[C_{1}']_{K_{-}}$	$[C_1'']_{K^{*-}}$
$D^0 \rightarrow \pi^0 K^- \ell^+ \nu_\ell$	$\frac{1}{\sqrt{2}}C_1$	$\left[\frac{1}{\sqrt{2}}C_{1}^{\prime}\right]_{K^{-}}$	$\left[\frac{1}{\sqrt{2}}C_1''\right]_{K^{*-}}$
$D^0 \rightarrow \eta_8 K^- \ell^+ \nu_\ell$	$-\frac{1}{-22}C_1 + \sqrt{6}c_{12}$		
$D^0 \rightarrow \eta_1 K^- \ell^+ \nu_\ell$	$\frac{2}{\sqrt{3}}(C_1 + \frac{3}{2}C_2) - \sqrt{3}c_{12}$		
$D^+ \to \pi^+ K^- \ell^+ \nu_\ell$	C1	$[C'_1]_{\overline{K}^0_2}$	$[C_1'']_{K^{*0}}$
$D^+ \rightarrow \pi^0 \overline{K}^0 \ell^+ \nu_\ell$	$-\frac{1}{\sqrt{2}}C_1$	$\left[\frac{1}{\sqrt{2}}C_{1}^{\prime}\right]_{\overline{K}_{0}^{0}}$	$\left[\frac{1}{\sqrt{2}}C_1''\right]_{K^{\bullet 0}}$
$D^+ \rightarrow \eta_8 \overline{K}^0 \ell^+ \nu_\ell$	$-\frac{1}{\sqrt{6}}C_1 + \sqrt{6}c_{12}$		
$D^+ \rightarrow \eta_1 \overline{K}^0 \ell^+ \nu_i$	$\frac{2}{\sqrt{3}}(C_1 + \frac{3}{2}C_2) - \sqrt{3}c_{12}$		
$D_s^+ \rightarrow K^+ K^- \ell^+ \nu_\ell$	$C_1 + 2C_3 = -3c_{11}$	$\left[\cos^2\theta_S C_1'\right]_{L_2(280)}$	$\begin{bmatrix} C_1'' \end{bmatrix}_{\phi}$
$D_s^+ \rightarrow K^0 \overline{K}^0 \ell^+ \nu_\ell$	$C_1 + 2C_3 = -3c_{11}$	$\left[\cos^2\theta_S C_1^i\right]_{f_0(980)}$	$\begin{bmatrix} C_1'' \end{bmatrix}_{\phi}$
$D_s^+ \rightarrow \pi^0 \pi^0 \ell^+ \nu_\ell$	$\sqrt{2}C_3 + \sqrt{2}c_{32}$	$\left[sin\theta_{S}cos\theta_{S}C_{2}^{r}\right]_{f_{0}(280)}$	
		$\left[-\sin\theta_{S}\cos\theta_{S}C_{1}^{*}\right]_{f_{0}(500)}$	
$D^+_s \to \pi^+\pi^-\ell^+\nu_\ell$	$2C_3$	$\left[-\sqrt{2}\sin\theta_S \cos\theta_S C_1^{\dagger}\right]_{I_0(100)}$	
$D_s^+ \rightarrow \eta_8 \eta_8 \ell^+ \nu_\ell$	$\frac{2\sqrt{2}}{3}(C_1 + \frac{3}{2}C_3) - \sqrt{2}(2c_{11} + 2c_{12} + c_{32})$		
$D_s^+ \rightarrow \eta_1 \eta_1 \ell^+ \nu_\ell$	$\frac{\sqrt{2}}{3}(C_1 + 3C_2 + 3C_3 + 9C_4) - \sqrt{2}(c_{11} + c_{12} + 3c_{13})$	21)	
$D_s^+ \rightarrow \eta_8 \eta_1 \ell^+ \nu_\ell$	$-\frac{2\sqrt{2}}{3}\left(C_{1}+\frac{3}{2}C_{2}\right)+2\sqrt{2}(c_{11}+c_{12}+\frac{3}{2}c_{21}+c_{32})$)	
$c \to d\ell^+ \nu_\ell ;$			
$D^0 \rightarrow K^- K^0 \ell^+ \nu_\ell$	$C_1 = -3(c_{12} - c_{13})$	$[C'_1]_{a_0(980)}$	
$D^0 \to \pi^0 \pi^- \ell^+ \nu_\ell$			$\left[\frac{1}{\sqrt{2}}C_1''\right]_{e^-}$
$D^0 \to \eta_8 \pi^- \ell^+ \nu_\ell$	$\sqrt{\frac{2}{3}}C_1 + \sqrt{6}c_{13}$	$\left[\sqrt{\frac{2}{3}}C_{1}'\right]_{a_{0}(980)}$	$\left[\frac{1}{\sqrt{6}}C_1''\right]_{\rho^-}$
$D^0 \to \eta_1 \pi^- \ell^+ \nu_\ell$	$\frac{2}{\sqrt{3}}\left(C_1 + \frac{3}{2}C_2\right) + \sqrt{3}(2c_{13} + 3c_{22})$	$\left[\frac{2}{\sqrt{3}}C'_{1}\right]_{a_{0}(980)}$	$\left[\frac{1}{\sqrt{3}}C_1''\right]_{\rho^-}$
$D^+ \rightarrow \overline{K}^0 K^0 \ell^+ \nu_\ell$	$C_1 + 2C_3 - 3(c_{12} - c_{13} - 2c_{31})$	$\begin{bmatrix} \frac{1}{2}C_1^t \end{bmatrix}_{a_0(580)^0}$ $\begin{bmatrix} -\frac{1}{2\pi}\sin\theta_S \cos\theta_S C_1^t \end{bmatrix}$	
		$\left[-\frac{1}{2}C_{1}^{\prime}\right]_{no(980)^{0}}$	
$D^+ \rightarrow K^+ K^- \ell^+ \nu_\ell$	2C ₃ +6c ₃₁	$\left[\frac{1}{\sqrt{2}}\sin\theta_S\cos\theta_S C_1'\right]_{f_0(980)}$	
$D^+ \to \pi^+\pi^-\ell^+\nu_\ell$	$C_1 + 2C_3 + 3e_{13} + 6e_{31}$	$\left[sin^2\theta_{\beta}C_1'\right]_{f_{\beta}(500)}$	$\begin{bmatrix} \frac{1}{2}C_1'' \end{bmatrix}_{\rho^0,\omega}$
		$\left[\frac{1}{2}\sin^2\theta_{S}C_{1}\right]_{f_{0}(500)}$	
$D^+ \rightarrow \pi^0 \pi^0 \ell^+ \nu_\ell$	$\frac{1}{\sqrt{2}}(C_1 + 2C_3) + \frac{1}{\sqrt{2}}(3c_{13} + 6c_{31} + 2c_{32})$	$\begin{bmatrix} \sqrt{2} & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 \end{bmatrix} f_0(500)$	
$D^+ \to \eta_8 \pi^0 \ell^+ \nu_\ell$	$-\frac{1}{\sqrt{3}}(C_1 + C_2) - \sqrt{3}(c_{13} + c_{22})$	$\left[-\frac{1}{\sqrt{6}}C_{1}'\right]_{a_{0}(0.00)}$	
$D^+ \to \eta_1 \pi^0 \ell^+ \nu_\ell$	$-\sqrt{\frac{2}{3}}(C_1 + C_2) - \frac{1}{\sqrt{6}}(6c_{13} + 9c_{22})$	$\left[-\frac{1}{\sqrt{3}}C'_{1}\right]_{a_{0}(980)}$	
$D^+ \to \eta_8 \eta_8 \ell^+ \nu_\ell$	$\frac{\sqrt{2}}{6}(C_1 + 6C_3) + \frac{1}{\sqrt{2}}(c_{13} + 6c_{31} - 2c_{32})$		
$D^+ \to \eta_1 \eta_1 \ell^+ \nu_\ell$	$-\frac{\sqrt{2}}{3}(C_1 + 3C_2 + 3C_3 + 9C_4) + \sqrt{2}(c_{13} + 3c_{22} + 3c_{33}) + \sqrt{2}(c_{13} + 3c_{23}) + \sqrt{2}(c_{13} + 3c_{2$	$c_{31} + 9c_{41}$ · · · ·	
$D^+ \to \eta_8 \eta_1 \ell^+ \nu_\ell$	$\frac{\sqrt{2}}{3}\left(C_1 + \frac{3}{2}C_2\right) + \sqrt{2}\left(c_{13} + \frac{3}{2}c_{22} + 2c_{32}\right)$		
$D^+_s \to K^+ \pi^- \ell^+ \nu_\ell$	$C_1 = 3c_{11} + 3c_{13}$	$[C'_1]_{K^0_0}$	$[C_1'']_{K^{*0}}$
$D^+_s \to K^0 \pi^0 \ell^+ \nu_{\bar{\ell}}$	$-\frac{1}{\sqrt{2}}C_1 - \frac{1}{\sqrt{2}}(-3c_{11} + 3c_{13})$	$\left[-\frac{1}{\sqrt{2}}C_{1}'\right]_{K_{\alpha}^{0}}$	$\left[\frac{1}{\sqrt{2}}C_1''\right]_{K^{*0}}$
$D_s^+ \to \eta_8 K^0 \ell^+ \nu_\ell$	$-\frac{1}{\sqrt{6}}C_1 + \frac{1}{\sqrt{6}}(3c_{11} + 6c_{12} - 3c_{13})$		
$D_s^+ \rightarrow \eta_1 K^0 \ell^+ \nu_\ell$	$\frac{2}{\sqrt{3}}(C_1 + \frac{3}{2}C_2) - \sqrt{3}(2c_{11} + c_{12} - 2c_{13} + 3c_{21} - 2c_{13} + 3c_{21})$	3e22)	

$$\begin{split} A(D^0 \to \pi \ \overline{K}^0 \ell^+ \nu_\ell)_N &= A(D^+ \to \pi^+ K \ \ell^+ \nu_\ell)_N = \sqrt{2} A(D^0 \to \pi^0 K \ \ell^+ \nu_\ell)_N = -\sqrt{2} A(D^+ \to \pi^0 \overline{K}^0 \ell^+ \nu_\ell)_N, \\ A(D^0 \to \eta_8 K^- \ell^+ \nu_\ell)_N &= A(D^+ \to \eta_8 \overline{K}^0 \ell^+ \nu_\ell)_N, \\ A(D^0 \to \eta_1 K^- \ell^+ \nu_\ell)_N &= A(D^+ \to \eta_1 \overline{K}^0 \ell^+ \nu_\ell)_N, \\ A(D^+_s \to K^+ K^- \ell^+ \nu_\ell)_N &= A(D^+_s \to K^0 \overline{K}^0 \ell^+ \nu_\ell)_N, \\ A(D^0_s \to K^- K^0 \ell^+ \nu_\ell)_N &= A(D^+ \to \overline{K}^0 K^0 \ell^+ \nu_\ell)_N - A(D^+ \to K^+ K^- \ell^+ \nu_\ell)_N, \\ A(D^+_s \to K^+ \pi^- \ell^+ \nu_\ell)_N &= -\sqrt{2} A(D^+_s \to K^0 \pi^0 \ell^+ \nu_\ell)_N. \end{split}$$

If ignoring both the OZI suppressed SU(3) flavor symmetry contributions and the SU(3) flavor breaking contributions, almost all amplitudes of the nonresonant decays can be related by the coefficient c_{10} .

TABLE II: The experimental data and the SU(3) flavor symmetry predictions of the non-resonant branching ratios and the total branching ratios of the $D \rightarrow P_1 P_2 \ell^+ \nu_{\ell}$ decays with the $c \rightarrow s \ell^+ \nu_{\ell}$ transitions with the 2σ errors. The experimental data are taken from PDG if not special specified. 'N' denotes the non-resonant contributions, and 'T' denotes the total contributions including the non-resonance, the light scalar meson resonances and the vector meson resonances. ^bScale factor S = 3.2 is considered. The same below.

Branching ratios	Exp. data wit	h N Ones with N	$\mathcal{B}(D^0 \to \pi^- \overline{K}^0 \mu^+ \nu_\mu) (\times 10^{-2})$		0.073 ± 0.039
$\mathcal{B}(D^0\to\pi^-\overline{K}^0e^+\nu_e)(\times10^{-2})$		0.076 ± 0.041	$\mathcal{B}(D^0\to\pi^0K^-\mu^+\nu_\mu)(\times10^{-2})$		0.038 ± 0.020
$\mathcal{B}(D^0 ightarrow \pi^0 K^- e^+ \nu_e) (imes 10^{-2})$		0.039 ± 0.021	$\mathcal{B}(D^0\to\eta K^-\mu^+\nu_\mu)(\times 10^{-6})$		2.77 ± 2.77
$\mathcal{B}(D^0\to\eta K^-e^+\nu_e)(\times 10^{-6})$		3.04 ± 3.04	$\mathcal{B}(D^0\to\eta' K^-\mu^+\nu_\mu)(\times 10^{-6})$		2.25 ± 1.22
$\mathcal{B}(D^0 ightarrow \eta' K^- c^+ \nu_c) (imes 10^{-6})$		3.26 ± 1.78	$\mathcal{B}(D^+ \to \pi^+ K^- \mu^+ \nu_\mu)(\times 10^{-2})$	0.19 ± 0.10	0.19 ± 0.10
$\mathcal{B}(D^+ \to \pi^+ K^- e^+ \nu_e) (\times 10^{-2})$	< 0.7	0.20 ± 0.10	$\mathcal{B}(D^+ \to \pi^0 \overline{K}^0 \mu^+ \nu_\mu)(\times 10^{-2})$		0.095 ± 0.050
$\mathcal{B}(D^+ \to \pi^0 \overline{K}^0 e^+ \nu_e)(\times 10^{-2})$		0.099 ± 0.052	$\mathcal{B}(D^+ o \eta \overline{K}^0 \mu^+ u_\mu)(imes 10^{-5})$		0.70 ± 0.70
$\mathcal{B}(D^{+} \to \eta \overline{K}^{0} e^{+} \nu_{e}) (\times 10^{-5})$		0.77 ± 0.77	$\mathcal{B}(D^+ \to \eta' \overline{K}^0 \mu^+ \nu_\mu)(\times 10^{-5})$		0.57 ± 0.31
$\mathcal{B}(D^+ \to \eta' \overline{K}^0 e^+ \nu_c) (\times 10^{-5})$		0.83 ± 0.45	$\mathcal{B}(D_s^+ \to K^+ K^- \mu^+ \nu_\mu)(\times 10^{-2})$		0.029 ± 0.016
$\mathcal{B}(D_s^+ \to K^+ K^- e^+ \nu_c) (\times 10^{-2})$		0.031 ± 0.017	$\mathcal{B}(D^+_* \to K^0 \overline{K}^0 u^+ \nu_e) (\times 10^{-3})$		0.28 ± 0.15
${\cal B}(D_s^+ o K^0 \overline{K}^0 c^+ u_e)(imes 10^{-3})$		0.30 ± 0.16	$\mathcal{O}(\mathcal{D}_{s}^{*})$ $\mathcal{O}(\mathcal{D}_{s}^{*})$ $\mathcal{O}(\mathcal{O}(\mathcal{D}_{s}^{*}))$		0.20 ± 0.10
$\mathcal{B}(D_s^+ \to \pi^+ \pi^- e^+ \nu_e) (\times 10^{-3})$			$\mathcal{B}(D_s^+ \to \pi^+ \pi^- \mu^+ \nu_\mu) (\times 10^{-3})$		
$\mathcal{B}(D_s^+ \to \pi^0 \pi^0 e^+ \nu_c) (\times 10^{-4})$			$\mathcal{B}(D_s^+\to\pi^0\pi^0\mu^+\nu_\mu)(\times10^{-4})$		
$\mathcal{B}(D_s^+ \to \eta \eta e^+ \nu_e)(\times 10^{-4})$		0.49 ± 0.42	$\mathcal{B}(D_s^+ \to \eta \eta \mu^+ \nu_\mu)(\times 10^{-4})$		0.45 ± 0.39
${\cal B}(D^+_s o \eta \eta' c^+ u_e)(imes 10^{-6})$		4.44 ± 2.68	$\mathcal{B}(D_s^+ \to \eta \eta' \mu^+ \nu_\mu) (\times 10^{-6})$		3.30 ± 1.99
1					

Many br are on the orders of $O(10^{-3} - 10^{-4})$

TABLE III: The experimental data and the SU(3) flavor symmetry predictions of the non-resonant branching ratios and the total branching ratios of $D \to P_1 P_2 \ell^+ \nu_\ell$ decays with the $c \to d\ell^+ \nu_\ell$ transitions with the 2σ errors.

Suppressed by V_{cd} . $c \rightarrow d\ell \nu$

 $\mathcal{B}(D^0 \to K^- K^0 \mu^+ \nu_\mu) (\times 10^{-5})$ 0.68 ± 0.37 Exp. data with N Branching ratios Ones with N $\mathcal{B}(D^0 \to \pi^0 \pi^- \mu^+ \nu_\mu) (\times 10^{-3})$ 0 $\mathcal{B}(D^0 \to K^- K^0 e^+ \nu_e) (\times 10^{-5})$ 0.74 ± 0.41 $\mathcal{B}(D^0 \to \eta \pi^- \mu^+ \nu_\mu)(\times 10^{-5})$ $\mathcal{B}(D^0 \to \pi^0 \pi^- e^+ \nu_e)(\times 10^{-3})$ 4.00 ± 2.51 0 $\mathcal{B}(D^0 \to \eta' \pi^- \mu^+ \nu_\mu) (\times 10^{-5})$ $\mathcal{B}(D^0 \to \eta \pi^- e^+ \nu_e)(\times 10^{-5})$ 4.19 ± 2.63 0.30 ± 0.20 $\mathcal{B}(D^+ \to \overline{K}^0 K^0 \mu^+ \nu_\mu) (\times 10^{-5})$ $\mathcal{B}(D^0 \to \eta' \pi^- e^+ \nu_e)(\times 10^{-5})$ 0.33 ± 0.22 1.73 ± 0.93 $\mathcal{B}(D^+ \to \overline{K}^0 K^0 e^+ \nu_e) (\times 10^{-5})$ 1.88 ± 1.01 $\mathcal{B}(D^+ \rightarrow K^+ K^- \mu^+ \nu_\mu)(\times 10^{-5})$... $\mathcal{B}(D^+ \to K^+ K^- e^+ \nu_e)(\times 10^{-5})$ $\mathcal{B}(D^+ \rightarrow \pi^+ \pi^- \mu^+ \nu_\mu) (\times 10^{-3})$ 0.29 ± 0.16 $\mathcal{B}(D^+ \to \pi^+\pi^-e^+\nu_e)(\times 10^{-3})$ 0.30 ± 0.16 $\mathcal{B}(D^+ \rightarrow \pi^0 \pi^0 \mu^+ \nu_\mu) (\times 10^{-4})$ 1.50 ± 0.81 $\mathcal{B}(D^+ \to \pi^0 \pi^0 e^+ \nu_e)(\times 10^{-4})$ 1.54 ± 0.83 $\mathcal{B}(D^+ \rightarrow n\pi^0 \mu^+ \nu_\mu)(\times 10^{-5})$ 5.31 ± 3.31 $\mathcal{B}(D^+ \to \eta \pi^0 e^+ \nu_e)(\times 10^{-5})$ 5.56 ± 3.47 $\mathcal{B}(D^+ \rightarrow \eta' \pi^0 \mu^+ \nu_\mu)(\times 10^{-6})$ 4.03 ± 2.66 $\mathcal{B}(D^+ \to \eta' \pi^0 e^+ \nu_e)(\times 10^{-6})$ 4.48 ± 2.96 $\mathcal{B}(D^+ \to \eta \eta \mu^+ \nu_\mu)(\times 10^{-6})$ 2.47 ± 1.78 $\mathcal{B}(D^+ \to \eta \eta e^+ \nu_e)(\times 10^{-6})$ 2.74 ± 1.99 $\mathcal{B}(D^+ \to \eta \eta' \mu^+ \nu_\mu)(\times 10^{-8})$ 1.98 ± 1.18 $\mathcal{B}(D^+ \to m'e^+\nu_e)(\times 10^{-8})$ 3.20 ± 1.92 $\mathcal{B}(D_s^+ \to K^+ \pi^- \mu^+ \nu_\mu)(\times 10^{-3})$ 0.075 ± 0.042 $\mathcal{B}(D_s^+ \to K^+ \pi^- e^+ \nu_e)(\times 10^{-3})$ 0.078 ± 0.043 $\mathcal{B}(D_s^+ \to K^0 \pi^0 \mu^+ \nu_\mu) (\times 10^{-4})$ 0.38 ± 0.21 $\mathcal{B}(D_s^+ \to K^0 \pi^0 e^+ \nu_e)(\times 10^{-4})$ 0.39 ± 0.22 $\mathcal{B}(D_s^+ \rightarrow nK^0\mu^+\nu_\mu)(\times 10^{-5})$ 1.40 ± 0.88 $\mathcal{B}(D_s^+ \to \eta K^0 e^+ \nu_e)(\times 10^{-5})$ 1.51 ± 0.95 $\mathcal{B}(D_s^+ \to \eta' K^0 e^+ \nu_e) (\times 10^{-7})$ $\mathcal{B}(D_s^+ \to \eta' K^0 \mu^+ \nu_\mu)(\times 10^{-7})$ 3.39 ± 2.26 4.32 ± 2.88

Many of them might be observed by the BESIII and

Bellell experiments in the near future.

 $O(10^{-4} - 10^{-7})$

5.2 Decays $D \rightarrow P_1 P_2 \ell^+ \nu_\ell$ with light scalar resonances

$$\mathcal{B}(D \to R\ell^+\nu_\ell, R \to P_1P_2) = \mathcal{B}(D \to R\ell^+\nu_\ell) \times \mathcal{B}(R \to P_1P_2)$$

TABLE IV: The strong coupling constants of the $S \rightarrow P_1P_2$ decays by the SU(3) flavor symmetry.

strong couplings	ones for two quark state	ones for four quark state	
$g_{K_0^-\to\pi^0K^-}$	$rac{1}{\sqrt{2}}$ g_2	$-rac{1}{\sqrt{2}}g_4$	$\Gamma(S \to P_1 P_2) = \frac{p_c}{2 R_c} g_{S \to P_1 P_2}^2,$
$g_{K_0^- \to \pi^- \overline{K}^0}$	g_2	g_4	$8\pi m_S^2$
$g_{\overline{K}_0^0 o \pi^+ K^-}$	g_2	g_4	
$g_{\overline{K}_0^0 \to \pi^0 \overline{K}^0}$	$-rac{1}{\sqrt{2}}~g_2$	$rac{1}{\sqrt{2}}g_4$	
$g_{a_0(980)}$ $\rightarrow \eta \pi^-$	$2 g_2 \left(\frac{1}{\sqrt{6}} cos \theta_P - \frac{1}{\sqrt{3}} sin \theta_P\right)$	$2 g'_4 \left(\frac{1}{\sqrt{6}} cos \theta_P - \frac{1}{\sqrt{3}} sin \theta_P \right)$	
$g_{a_0(980)}{}^-{}_{ ightarrow \eta'\pi^-}$	$2 g_2 \left(\frac{1}{\sqrt{6}} \sin\theta_P + \frac{1}{\sqrt{3}} \cos\theta_P\right)$	$2 g'_4 \left(\frac{1}{\sqrt{6}} \sin\theta_P + \frac{1}{\sqrt{3}} \cos\theta_P\right)$	
$g_{a_0(980)} - \to K^0 K^-$	g_2	g_4	
$g_{a_0(383)^0 ightarrow \eta \pi^0}$	$g_2\left(\frac{1}{\sqrt{3}}cos\theta_P - \sqrt{\frac{2}{3}}sin\theta_P\right)$	$g'_4 \left(\frac{1}{\sqrt{6}} cos \theta_P - \frac{1}{\sqrt{3}} sin \theta_P \right)$	$a^{2q} = -a_0 S^i P^k P^j$
$g_{\alpha_0(383)^{ m o} ightarrow \eta' \pi^{ m o}}$	$g_2\left(\frac{1}{\sqrt{3}}sin\theta_P+\sqrt{\frac{2}{3}}cos\theta_P\right)$	$g_4' \left(rac{1}{\sqrt{6}} sin heta_P + rac{1}{\sqrt{3}} cos heta_P ight)$	$g_{S \to P_1 P_2} - g_{2 \cup j} r_i r_k,$
$g_{a_0(980)^0 \to K^+ K^-}$	$rac{1}{\sqrt{2}}$ g_2	$rac{1}{\sqrt{2}}$ g_4	
$g_{a_0(980)^0 \rightarrow K^0 \overline{K}^0}$	$-rac{1}{\sqrt{2}}~g_2$	$-rac{1}{\sqrt{2}}~g_4$	
$g_{f_0(980) \to \pi^+\pi^-}$	$\sqrt{2} g_2 \sin \theta_S$	$\sqrt{2}~g_4'~cos\phi_S+g_4sin\phi_S$	
$g_{f_0(980) \to \pi^0 \pi^0}$	$g_2 \ sin heta_S$	$g'_4 \ cos\phi_S - rac{1}{\sqrt{2}}g_4 sin\phi_S$	
$g_{f_0(980)\to K^+K^-}$	$g_2 \ cos \theta_S$	$rac{1}{\sqrt{2}}g_4cos\phi_S$	$a_{\alpha}^{4q} = a_{4}S^{im}P^{j}P^{n} + a_{4}'S^{im}P^{n}P^{j}P^{n}$
$g_{f_0(980)\to K^0\overline{K}^0}$	$g_2 cos heta_S$	$\frac{1}{\sqrt{2}}g_4 cos\phi_S$	$9S \rightarrow P_1 P_2$ $94 \sim jn + i + m + 94 \sim jm + i + n$
$g_{f_0(500) \to \pi^+ \pi^-}$	$\sqrt{2} g_2 \cos \theta_S$	$-\sqrt{2} g_4' \sin\phi_S + g_4 \cos\phi_S$	
$g_{f_0(500) \to \pi^0 \pi^0}$	$g_2 cos heta_S$	$-g'_4 \sin\phi_S - \frac{1}{\sqrt{2}}g_4 \cos\phi_S$	15

$[25^{\circ}, 40^{\circ}] \Rightarrow [25^{\circ}, 35^{\circ}]$

TABLE VI: The experimental data and the SU(3) flavor symmetry predictions of the $D \to S\ell^+\nu_\ell$, $S \to P_1P_2$ decays with [†]denotes the results with $\frac{S_1'}{S_1} > 0$, [‡] denotes ones with $\frac{S_1'}{S_1} < 0$. $|\phi_S| \leq 30^\circ \Rightarrow 22^\circ \leq |\phi_S| \leq 30^\circ$

Branching ratios	Exp. Data	Ones in the 2-quark picture with		Ones in the 4-quark picture	
$C \rightarrow S \ell V$		$\theta_S = [25^\circ, 35^\circ]$	$\theta_S = [144^\circ, 158^\circ]$	$22^\circ \leq \theta_S \leq 30^\circ$	
$\mathcal{B}(D^0\to K_0^-e^+\nu_e,\ K_0^-\to\pi^-\overline{K}^0)(\times 10^{-4})$		19.99 ± 7.34	19.86 ± 7.26	19.74 ± 6.97	8.37 ± 3.01
${\cal B}(D^0\to K_0^-e^+\nu_e,\ K_0^-\to\pi^0 K^-)(\times 10^{-4})$		10.18 ± 3.77	10.12 ± 3.73	10.05 ± 3.57	4.19 ± 1.50
$\mathcal{B}(D^+ ightarrow \overline{K}^0_0 e^+ u_e, \ \overline{K}^0_0 ightarrow \pi^+ K^-) (imes 10^{-3})$		5.17 ± 1.92	5.19 ± 1.85	5.12 ± 1.86	2.24 ± 0.83
$\mathcal{B}(D^+ \to \overline{K}^0_0 e^+ \nu_e, \ \overline{K}^0_0 \to \pi^0 \overline{K}^0) (\times 10^{-3})$		2.57 ± 0.96	2.59 ± 0.92	2.55 ± 0.92	1.12 ± 0.42
$\mathcal{B}(D_s^+ \to f_0(980)e^+\nu_e, \ f_0(980) \to \pi^+\pi^-)(\times 10^{-3})$	$1.30 \pm 0.63 \ [78]$	1.19 ± 0.18	1.17 ± 0.17	1.18 ± 0.17	$1.22\pm 0.55^{\dagger}, \ \ 1.44\pm 0.49^{\sharp}$
$\mathcal{B}(D_s^+ \to f_0(980) e^+ \nu_e, \ f_0(980) \to \pi^0 \pi^0) (\times 10^{-4})$	7.9 ± 2.9 [4]	5.95 ± 0.92	5.89 ± 0.85	5.90 ± 0.86	$7.91 \pm 2.85^{\dagger}, \ 7.13 \pm 2.10^{\sharp}$
$\mathcal{B}(D_s^+ \to f_0(980)e^+\nu_e, \ f_0(980) \to K^+K^-)(\times 10^{-4})$		5.11 ± 2.34	5.53 ± 2.78	6.28 ± 2.07	$3.33 \pm 1.53^{\dagger}, \ \ 3.07 \pm 1.34^{\sharp}$
$\mathcal{B}(D_s^+ \to f_0(980)e^+\nu_e, \ f_0(980) \to K^0\overline{K}^0)(\times 10^{-4})$		4.62 ± 2.12	5.01 ± 2.52	5.68 ± 1.87	$3.01 \pm 1.39^{\dagger}, \ \ 2.78 \pm 1.22^{\sharp}$
$\mathcal{B}(D_s^+ \to f_0(500) e^+ \nu_e, \ f_0(500) \to \pi^+ \pi^-) (\times 10^{-4})$		9.91 ± 2.83	9.67 ± 3.07	9.44 ± 3.30	$2.49\pm 2.49^{\dagger}, \ \ 0.90\pm 0.90^{\sharp}$
$\mathcal{B}(D_s^+ \to f_0(500)e^+\nu_e, \ f_0(500) \to \pi^0\pi^0)(\times 10^{-5})$	< 64 [4]	49.77 ± 14.23	48.57 ± 15.43	47.44 ± 16.56	$6.66\pm 6.66^{\dagger}, \ 0.78\pm 0.78^{\sharp}$
${\cal B}(D^0\to K_0^-\mu^+\nu_\mu,\;K_0^-\to\pi^-K^0)(\times 10^{-4})$		17.27 ± 6.48	17.16 ± 6.41	17.04 ± 6.14	7.19 ± 2.63
$\mathcal{B}(D^0 \to K_0^- \mu^+ \nu_\mu, \ K_0^- \to \pi^0 K^-)(\times 10^{-4})$		8.63 ± 3.24	8.58 ± 3.20	8.52 ± 3.07	3.59 ± 1.32
$\mathcal{B}(D^+ o \overline{K}^0_0 \mu^+ u_\mu, \ \overline{K}^0_0 o \pi^+ K^-)(imes 10^{-3})$		4.43 ± 1.68	4.46 ± 1.62	4.40 ± 1.62	1.92 ± 0.73
$\mathcal{B}(D^+ \to \overline{K}^0_0 \mu^+ \nu_\mu, \ \overline{K}^0_0 \to \pi^0 K^0)(\times 10^{-3})$		2.22 ± 0.84	2.23 ± 0.81	2.20 ± 0.81	0.96 ± 0.36
$\mathcal{B}(D_s^+ o f_0(980) \mu^+ u_{\mu}, \ f_0(980) o \pi^+ \pi^-) (imes 10^{-3})$		1.01 ± 0.16	1.00 ± 0.15	1.00 ± 0.16	$1.02\pm 0.46^{\dagger}, \ \ 1.23\pm 0.42^{\sharp}$
$\mathcal{B}(D_s^+ \to f_0(980) \mu^+ \nu_{\mu}, \ f_0(980) \to \pi^0 \pi^0) (\times 10^{-4})$		5.05 ± 0.83	4.99 ± 0.77	5.00 ± 0.78	$6.72\pm2.48^{\dagger},\ \ 6.04\pm1.82^{\sharp}$
$\mathcal{B}(D_s^+ \to f_0(980) \mu^+ \nu_{\mu}, \ f_0(980) \to K^+ K^-) (\times 10^{-4})$		4.31 ± 1.94	4.70 ± 2.34	5.34 ± 1.75	$2.79 \pm 1.28^{\dagger}, \ \ 2.59 \pm 1.14^{\sharp}$
$\mathcal{B}(D_s^+ o f_0(980) \mu^+ u_{\mu}, \ f_0(980) o K^0 \overline{K}^0)(imes 10^{-4})$		3.90 ± 1.76	4.25 ± 2.12	4.83 ± 1.58	$2.52\pm 1.16^{\dagger}, \ \ 2.34\pm 1.03^{\sharp}$
$\mathcal{B}(D_s^+ \to f_0(500) \mu^+ \nu_\mu, \ f_0(500) \to \pi^+ \pi^-) (\times 10^{-4})$		8.88 ± 2.62	8.70 ± 2.86	8.49 ± 3.05	$2.30\pm 2.30^{\dagger}, \ \ 0.83\pm 0.83^{\sharp}$
$\mathcal{B}(D_s^+ \to f_0(500) \mu^+ \nu_{\mu}, \ f_0(500) \to \pi^0 \pi^0) (\times 10^{-5})$		44.67 ± 13.23	43.85 ± 14.53	42.77 ± 15.49	$6.16\pm 6.16^{\dagger}, \ 7.23\pm 7.23^{\sharp}$

 $O(10^{-3} - 10^{-4})$

$c \rightarrow d\ell v$

TABLE VII: The experimental data and the SU(3) flavor symmetry predictions of the $D \to S\ell^+\nu_\ell \to P_1P_2\ell^+\nu_\ell$ decays with the $e \to d\ell^+\nu_\ell$ transitions within 2σ errors. [†] denotes the results with $\frac{S'_1}{S_1} > 0$, [‡] denotes ones with $\frac{S'_1}{S_1} < 0$, and ^a denotes the experimental lower limits have not used to constain the predictions.

Branching ratios	Exp. Data	One	s in the 2-quark picutr	e with	Ones in the 4-quark picutre
		$\theta_S = [25^\circ, 35^\circ]$	$\theta_S = [144^\circ, 158^\circ]$	$22^\circ \leq \theta_S \leq 30^\circ$	
$\mathcal{B}(D^0 \to a_0(980)^- e^+ \nu_e, \ a_0(980)^- \to \eta \pi^-)(\times 10^{-5})$	$13.3^{+6.8}_{-6.0^a}$	5.99 ± 2.69	5.86 ± 2.48	6.05 ± 2.57	3.81 ± 0.98 30
$\mathcal{B}(D^0 \to a_0(980)^- e^+ \nu_e, a_0(980)^- \to \eta' \pi^-)(\times 10^{-6})$		2.88 ± 1.71	2.97 ± 1.77	2.97 ± 1.73	1.88 ± 0.98
$\mathcal{B}(D^0 \to a_0(980)^- e^+ \nu_e, \ a_0(980)^- \to K^0 K^-)(\times 10^{-6})$		29.99 ± 13.81	30.73 ± 13.81	30.57 ± 13.70	4.22 ± 1.93
$\mathcal{B}(D^+ \to a_0(980)^0 e^+ \nu_e, \ a_0(980)^0 \to \eta \pi^0)(\times 10^{-5})$	17^{+16}_{-14}	7.35 ± 3.28	7.25 ± 3.13	7.32 ± 3.17	4.00 ± 1.00
$\mathcal{B}(D^+ \to a_0(980)^0 e^+ \nu_e, \ a_0(980)^0 \to \eta' \pi^0)(\times 10^{-6})$		5.53 ± 3.26	5.69 ± 3.32	5.65 ± 3.20	3.08 ± 1.56
${\cal B}(D^+\to a_0(980)^0 e^+\nu_{\rm e},~a_0(980)^0\to K^+K^-)(\times 10^{-5})$		2.28 ± 1.06	2.30 ± 1.00	2.29 ± 0.99	0.88 ± 0.36
$\mathcal{B}(D^+ \to a_0(980)^0 e^+ \nu_e, \ a_0(980)^0 \to K^0 \overline{K}^0)(\times 10^{-5})$		1.99 ± 0.92	2.01 ± 0.88	2.00 ± 0.86	0.77 ± 0.31
$\mathcal{B}(D^+ \to f_0(980) e^+ \nu_e, \ f_0(980) \to \pi^+ \pi^-) (\times 10^{-5})$	< 2.8 [5]	1.15 ± 0.50	1.10 ± 0.58	0.96 ± 0.43	$1.65\pm 1.15^{\dagger}, \ \ 2.14\pm 0.65^{\sharp}$
$\mathcal{B}(D^+ \to f_0(980)e^+\nu_e, \ f_0(980) \to \pi^0\pi^0)(\times 10^{-6})$		5.75 ± 2.53	5.51 ± 2.92	4.80 ± 2.18	$10.53 \pm 3.67^{\dagger}, \ \ 10.10 \pm 5.37^{\sharp}$
$\mathcal{B}(D^+ \to f_0(980)e^+\nu_e, \ f_0(980) \to K^+K^-)(\times 10^{-6})$		5.07 ± 0.88	5.06 ± 0.85	5.01 ± 0.80	$4.35\pm 2.78^{\dagger},\ \ 4.60\pm 2.76^{\sharp}$
$\mathcal{B}(D^+ \to f_0(980)e^+\nu_e, f_0(980) \to K^0\overline{K}^0)(\times 10^{-6})$		5.07 ± 0.88	5.06 ± 0.85	5.01 ± 0.80	$4.35 \pm 2.78^{\dagger}, \ \ 4.60 \pm 2.76^{\sharp}$
$\mathcal{B}(D^+ \to f_0(500)e^+\nu_e, \ f_0(500) \to \pi^+\pi^-)(\times 10^{-4})$	6.3 ± 1.0^a	1.4 0.64	er fräht da	1.79 ± 0.85	$3.64 \pm 2.51^{\dagger}, \ 2.05 \pm 1.87^{\sharp}$
$\mathcal{B}(D^+ \to f_0(500)e^+\nu_e, \ f_0(500) \to \pi^0\pi^0)(\times 10^{-4})$		0.72 ± 0.32	0.87 ± 0.46	0.91 ± 0.43	1.45 ± 1.02 $2.08 \pm 1.57^{\sharp}$
${\cal B}(D^+_s\to K^0_0 e^+\nu_e,\; K^0_0\to \pi^-K^+)(\times 10^{-5})$		22.34 ± 8.09	22.13 ± 7.97	22.34 ± 7.64	9.54 ± 3.38
$\mathcal{B}(D_s^+ \to K_0^0 e^+ \nu_e, \ K_0^0 \to \pi^0 K^0)(\times 10^{-5})$		11.17 ± 4.04	11.07 ± 3.99	11.17 ± 3.82	4.77 ± 1.69
$\mathcal{B}(D^0 \to a_0(980)^- \mu^+ \nu_{\mu}, a_0(980)^- \to \eta \pi^-)(\times 10^{-5})$		4.95 ± 2.27	4.84 ± 2.10	5.00 ± 2.18	3.14 ± 0.84
$\mathcal{B}(D^0 \to a_0(980)^- \mu^+ \nu_\mu, \ a_0(980)^- \to \eta' \pi^-)(\times 10^{-6})$		2.39 ± 1.44	2.46 ± 1.48	2.45 ± 1.45	1.56 ± 0.82
$\mathcal{B}(D^0 \to a_0(980)^- \mu^+ \nu_{\mu}, \ a_0(980)^- \to K^0 K^-)(\times 10^{-6})$		24.78 ± 11.68	25.37 ± 11.62	25.20 ± 11.53	3.51 ± 1.62
$\mathcal{B}(D^+ \to a_0(980)^0 \mu^+ \nu_{\mu}, \ a_0(980)^0 \to \eta \pi^0) (\times 10^{-5})$		6.09 ± 2.78	6.00 ± 2.65	6.06 ± 2.69	3.30 ± 0.86
$\mathcal{B}(D^+ \to a_0(980)^0 \mu^+ \nu_{\mu}, \ a_0(980)^0 \to \eta' \pi^0)(\times 10^{-6})$		4.58 ± 2.74	4.72 ± 2.79	4.67 ± 2.69	2.55 ± 1.31
$\mathcal{B}(D^+ \to a_0(980)^0 \mu^+ \nu_\mu, \ a_0(980)^0 \to K^+ K^-)(\times 10^{-5})$		1.89 ± 0.89	1.91 ± 0.85	1.89 ± 0.83	0.73 ± 0.30
$\mathcal{B}(D^+ \to a_0(980)^0 \mu^+ \nu_\mu, \ a_0(980)^0 \to K^0 \overline{K}^0)(\times 10^{-5})$		1.65 ± 0.78	1.66 ± 0.74	1.65 ± 0.73	0.64 ± 0.27
$\mathcal{B}(D^+ \to f_0(980) \mu^+ \nu_{\mu}, \ f_0(980) \to \pi^+ \pi^-) (\times 10^{-5})$	(0.94 ± 0.43	0.91 ± 0.48	0.79 ± 0.36	$1.37 \pm 0.96^{\dagger}, \ 1.76 \pm 0.55^{\sharp}$
$\mathcal{B}(D^+ \to f_0(980)\mu^+\nu_\mu, \ f_0(980) \to \pi^0\pi^0)(\times 10^{-6})$		4.74 ± 2.14	4.58 ± 2.43	3.97 ± 1.82	$8.67 \pm 3.13^{\dagger}, \ 8.32 \pm 4.47^{\sharp}$
$\mathcal{B}(D^+ \to f_0(980)\mu^+\nu_{\mu}, f_0(980) \to K^+K^-)(\times 10^{-6})$		4.21 ± 0.73	4.19 ± 0.71	4.15 ± 0.67	$3.55 \pm 2.29^{\dagger}, \ \ 3.76 \pm 2.26^{\sharp}$
$\mathcal{B}(D^+ \to f_0(980)\mu^+\nu_{\mu}, f_0(980) \to K^0\overline{K}^0)(\times 10^{-6})$		4.21 ± 0.73	4.19 ± 0.71	4.15 ± 0.67	$3.55 \pm 2.29^{\dagger}, \ \ 3.76 \pm 2.26^{\sharp}$
$\mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_{\mu}, \ f_0(980) \to \pi^+ \pi^-) (\times 10^{-4})$		1.28 ± 0.59	1.54 ± 0.84	1.61 ± 0.79	$3.30 \pm 2.39^{\dagger}, \ 2.68 \pm 1.74^{\sharp}$
$\mathcal{B}(D^+ \to f_0(500)\mu^+\nu_{\mu}, \ f_0(980) \to \pi^0\pi^0)(\times 10^{-4})$		0.64 ± 0.30	0.78 ± 0.43	0.81 ± 0.40	$1.32\pm 0.95^{\dagger}, \ \ 1.89\pm 1.46^{\sharp}$
$\mathcal{B}(D_8^+ \to K_0^0 \mu^+ \nu_{\mu}, \ K_0^0 \to \pi^- K^+)(\times 10^{-5})$		19.61 ± 7.20	19.43 ± 7.10	19.60 ± 6.80	8.38 ± 3.01
$\mathcal{B}(D_s^+ \to K_0^0 \mu^+ \nu_{\mu}, \ K_0^0 \to \pi^0 K^0)(\times 10^{-5})$		9.80 ± 3.60	9.71 ± 3.55	9.80 ± 3.40	4.19 ± 1.50

 $O(10^{-4} - 10^{-6})$

5.3 Decays $D \rightarrow P_1 P_2 \ell^+ \nu_\ell$ with vector resonances

 $\mathcal{B}(D \to R\ell^+\nu_\ell, R \to P_1P_2) = \mathcal{B}(D \to R\ell^+\nu_\ell) \times \mathcal{B}(R \to P_1P_2),$

 $\mathcal{B}(V \to P_1 P_2)$ can be written as [79]

$$\mathcal{B}(V \to P_1 P_2) = \frac{\tau_V p_c^{\prime 3}}{6\pi m_V^2} g_{V \to P_1 P_2}^2,\tag{20}$$

with $p'_c \equiv \frac{\sqrt{\lambda(m_V^2, m_{P_1}^2, m_{P_2}^2)}}{2m_V}$, and $g_{V \to P_1 P_2}$ are the strong coupling constants. Many involved $\mathcal{B}(V \to P_1 P_2)$ are measured [11]

$$\mathcal{B}(K^{*+} \to \pi K) = (99.902 \pm 0.018)\%, \qquad \mathcal{B}(K^{*0} \to \pi K) = (99.754 \pm 0.042)\%, \\ \mathcal{B}(\rho^+ \to \pi^0 \pi^+) = 100\%, \qquad \mathcal{B}(\rho^0 \to \pi^+ \pi^-) = 100\%, \\ \mathcal{B}(\phi \to K^+ K^-) = (49.1 \pm 1.0)\% \text{ with } S = 1.3, \qquad \mathcal{B}(\omega \to \pi^+ \pi^-) = (1.53^{+0.22}_{-0.26})\% \text{ with } S = 1.2.$$
(21)

Using the following relations

$$\sqrt{2}g_{K^{*-}\to\pi^{0}K^{-}} = g_{K^{*-}\to\pi^{-}K^{0}}, \qquad \sqrt{2}g_{K^{*0}\to\pi^{0}K^{0}} = g_{K^{*0}\to\pi^{-}K^{+}},
 g_{\rho^{-}\to\pi^{0}\pi^{-}} = \sqrt{3}g_{\rho^{-}\to\eta_{8}\pi^{-}} = \sqrt{3/2}g_{\rho^{-}\to\eta_{1}\pi^{-}}, \qquad g_{\phi\to K^{+}K^{-}} = g_{\phi\to K^{0}\overline{K}^{0}},$$
(22)

other $\mathcal{B}(V \to P_1 P_2)$ can be obtained

$$\mathcal{B}(K^{*0} \to \pi^0 K^0) = (33.02 \pm 0.02)\%, \qquad \mathcal{B}(K^{*0} \to \pi^- K^+) = (66.74 \pm 0.04)\%, \\ \mathcal{B}(K^{*+} \to \pi^0 K^+) = (33.62 \pm 0.01)\%, \qquad \mathcal{B}(K^{*+} \to \pi^- K^0) = (66.28 \pm 0.01)\%, \\ \mathcal{B}(\rho^+ \to \eta \pi^+) = (4.38 \pm 0.66)\%, \qquad \mathcal{B}(\phi \to K^0 K^0) = (32.42 \pm 1.04)\%.$$
(23)

TABLE VIII:	The experimental	data and the St	J(3) flavor	symmetry	predictions o	$f D \to V\ell$	$^+\nu_\ell \to P$	$_1P_2\ell^+ u_\ell$	decays within
2σ errors.									

Branching ratios	Exp. Data	Our predictions	Previous ones	
$c \rightarrow s e^+ \nu_e$:				
$\mathcal{B}(D^0 o K^{\star -} e^+ u_e, \ K^{\star -} o \pi^- \overline{K}^0)(imes 10^{-2})$		1.42 ± 0.07		
$\mathcal{B}(D^0 \to K^{*-} e^+ \nu_e, \ K^{*-} \to \pi^0 K^-)(\times 10^{-3})$		7.18 ± 0.37	7.17 [20]	
$\mathcal{B}(D^+ \to \overline{K}^{*0} e^+ \nu_e, \ \overline{K}^{*0} \to \pi^+ K^-)(\times 10^{-2})$	3.77 ± 0.34	3.64 ± 0.11	3.51 [20]	
$\mathcal{B}(D^+ \to \overline{K}^{*0} e^+ \nu_e, \ \overline{K}^{*0} \to \pi^0 \overline{K}^0) (\times 10^{-2})$		1.80 ± 0.06		
$\mathcal{B}(D_s^+ \to \phi e^+ \nu_e, \ \phi \to K^+ K^-) (\times 10^{-2})$		1.20 ± 0.10		
$\mathcal{B}(D_s^+ \to \phi e^+ \nu_e, \ \phi \to K^0 \overline{K}^0)(\times 10^{-3})$		7.94 ± 0.65		$(10^{-2} - 10^{-3})$
$c \rightarrow s \mu^+ \nu_\mu$:				0(10 - 10)
$\mathcal{B}(D^0 o K^{*-} \mu^+ u_{\mu}, \ K^{*-} o \pi^- \overline{K}^0)(imes 10^{-2})$		1.33 ± 0.07		
$\mathcal{B}(D^0 \to K^{*-} \mu^+ \nu_{\mu}, \ K^{*-} \to \pi^0 K^-)(\times 10^{-3})$		6.76 ± 0.35	7.17 [20]	
$\mathcal{B}(D^+ \to \overline{K}^{*0} \mu^+ \nu_\mu, \ \overline{K}^{*0} \to \pi^+ K^-) (\times 10^{-2})$	3.52 ± 0.20	3.43 ± 0.11	3.51 [20]	
$\mathcal{B}(D^+ \to \overline{K}^{*0} \mu^+ \nu_\mu, \ \overline{K}^{*0} \to \pi^0 \overline{K}^0)(\times 10^{-2})$		1.70 ± 0.05		
$\mathcal{B}(D^+_s\to\phi\mu^+\nu_\mu,\ \phi\to K^+K^-)(\times 10^{-2})$		1.13 ± 0.09		
$\mathcal{B}(D_s^+ \to \phi \mu^+ \nu_\mu, \ \phi \to K^0 \overline{K}^0)(\times 10^{-3})$		7.46 ± 0.62		
$c \rightarrow de^+ \nu_e$:				
$\mathcal{B}(D^0 \to \rho^- e^+ \nu_e, \ \rho^- \to \pi^0 \pi^-) (\times 10^{-3})$		1.85 ± 0.11	1.63 [20]	
$\mathcal{B}(D^0\to\rho^-e^+\nu_e,\ \rho^-\to\eta\pi^-)(\times10^{-5})$		8.23 ± 1.59		
$\mathcal{B}(D^+\to\rho^0 e^+\nu_c,\ \rho^0\to\pi^+\pi^-)(\times 10^{-3})$		2.40 ± 0.12	1.57 ± 0.07 [13], 2.10 [20]	
$\mathcal{B}(D^+ ightarrow \omega e^+ \nu_e, \ \omega ightarrow \pi^+ \pi^-) (imes 10^{-5})$		3.55 ± 0.82		
$\mathcal{B}(D_s^+ \to K^{*0} e^+ \nu_e, \ K^{*0} \to \pi^- K^+)(\times 10^{-3})$		1.49 ± 0.10		
${\cal B}(D^+_s o K^{*0} e^+ u_e, \ K^{*0} o \pi^0 K^0) (imes 10^{-4})$		7.39 ± 0.51		$ = O(10^{-3} - 10^{-5}) $
$c \rightarrow d\mu^+ \nu_\mu$:				
${\cal B}(D^0 o ho^- \mu^+ u_\mu, \ ho^- o \pi^0 \pi^-) (imes 10^{-3})$		1.76 ± 0.10		
$\mathcal{B}(D^0 ightarrow ho^- \mu^+ u_\mu, \ ho^- ightarrow \eta \pi^-) (imes 10^{-5})$		7.83 ± 1.51		
${\cal B}(D^+ o ho^0 \mu^+ u_\mu, \ ho^0 o \pi^+ \pi^-) (imes 10^{-3})$		2.29 ± 0.11	1.57 ± 0.07 [13]	
$\mathcal{B}(D^+ \to \omega \mu^+ \nu_\mu, \ \omega \to \pi^+ \pi^-)(\times 10^{-5})$		3.38 ± 0.78		
$\mathcal{B}(D_s^+ \to K^{*0} \mu^+ \nu_{\mu}, \ K^{*0} \to \pi^- K^+)(\times 10^{-3})$		1.42 ± 0.10		19
$\mathcal{B}(D_s^+ \to K^{*0} \mu^+ \nu_{\mu}, \ K^{*0} \to \pi^0 K^0)(\times 10^{-4})$		7.03 ± 0.48		

5.4 Total branching ratios of decays $D \rightarrow P_1 P_2 \ell^+ \nu_{\ell}$ $c \rightarrow s \ell v$ $c \rightarrow d\ell v$

Branching ratios	Exp. data with T	Ones with T
$\mathcal{B}(D^0 \to \pi^- \overline{K}^0 e^+ \nu_e)(\times 10^{-2})$	1.44 ± 0.08	1.57 ± 0.14
$\mathcal{B}(D^0\to\pi^0K^-e^+\nu_e)(\times10^{-2})$	$1.6^{+2.6}_{-1.0}$	0.80 ± 0.07
$\mathcal{B}(D^0\to\eta K^-e^+\nu_e)(\times 10^{-6})$		3.04 ± 3.04
$\mathcal{B}(D^0\to\eta' K^-e^+\nu_c)(\times 10^{-6})$		3.26 ± 1.78
$\mathcal{B}(D^+ \rightarrow \pi^+ K^- e^+ \nu_e) (\times 10^{-2})$	4.02 ± 1.15^{b}	4.06 ± 0.30
${\cal B}(D^+\to\pi^0\overline{K}^0e^+\nu_e)(\times10^{-2})$		2.01 ± 0.15
${\cal B}(D^+\to\eta\overline{K}^0e^+\nu_e)(\times10^{-5})$		0.77 ± 0.77
$\mathcal{B}(D^+\to\eta'\overline{K}^0e^+\nu_e)(\times10^{-5})$		0.83 ± 0.45
$\mathcal{B}(D_s^+ \to K^+ K^- e^+ \nu_e) (\times 10^{-2})$		1.27 ± 0.13
$\mathcal{B}(D^+_s\to K^0\overline{K}^0e^+\nu_c)(\times 10^{-3})$		8.56 ± 0.95
$\mathcal{B}(D_s^+ \to \pi^+\pi^- e^+\nu_e)(\times 10^{-3})$		1.47 ± 0.79
$\mathcal{B}(D_s^+\to\pi^0\pi^0e^+\nu_e)(\times10^{-4})$		8.58 ± 3.50
$\mathcal{B}(D_s^+ \to \eta \eta e^+ \nu_e)(\times 10^{-4})$		0.49 ± 0.42
$\mathcal{B}(D_s^+ \to \eta \eta' e^+ \nu_e) (\times 10^{-6})$		4.44 ± 2.68
$\mathcal{B}(D^0 \to \pi^- \overline{K}^0 \mu^+ \nu_\mu) (\times 10^{-2})$		1.48 ± 0.13
$\mathcal{B}(D^0\to\pi^0K^-\mu^+\nu_\mu)(\times10^{-2})$		0.75 ± 0.07
$\mathcal{B}(D^0\to\eta K^-\mu^+\nu_\mu)(\times 10^{-6})$		2.77 ± 2.77
$\mathcal{B}(D^0\to\eta' K^-\mu^+\nu_\mu)(\times 10^{-6})$		2.25 ± 1.22
$\mathcal{B}(D^+ \to \pi^+ K^- \mu^+ \nu_\mu) (\times 10^{-2})$	3.65 ± 0.68	3.81 ± 0.27
$\mathcal{B}(D^+ \to \pi^0 \overline{K}^0 \mu^+ \nu_\mu) (\times 10^{-2})$		1.89 ± 0.14
$\mathcal{B}(D^+ \to \eta \overline{K}^0 \mu^+ \nu_\mu) (\times 10^{-5})$		0.70 ± 0.70
$\mathcal{B}(D^+ \to \eta' \overline{K}^0 \mu^+ \nu_\mu) (\times 10^{-5})$		0.57 ± 0.31
$\mathcal{B}(D_s^+\to K^+K^-\mu^+\nu_\mu)(\times 10^{-2})$		1.19 ± 0.12
$\mathcal{B}(D^+_s\to K^0\overline{K}{}^0\mu^+\nu_\mu)(\times 10^{-3})$		7.99 ± 0.87
$\mathcal{B}(D_s^+ \to \pi^+\pi^-\mu^+\nu_\mu)(\times 10^{-3})$		1.25 ± 0.69
$\mathcal{B}(D_s^+\to\pi^0\pi^0\mu^+\nu_\mu)(\times10^{-4})$		7.34 ± 3.08
$\mathcal{B}(D_s^+ \to \eta \eta \mu^+ \nu_\mu)(\times 10^{-4})$		0.45 ± 0.39
$\mathcal{B}(D_{\star}^+ \rightarrow nn'\mu^+\nu_{\mu})(\times 10^{-6})$		3.30 ± 1.99

Branching ratios	Exp. data with T	Ones with T
$\mathcal{B}(D^0\to K^-K^0e^+\nu_e)(\times 10^{-5})$		1.16 ± 0.60
$\mathcal{B}(D^0\to\pi^0\pi^-e^+\nu_e)(\times10^{-3})$	1.45 ± 0.14	1.85 ± 0.11
$\mathcal{B}(D^0\to\eta\pi^-e^+\nu_e)(\times10^{-5})$		16.22 ± 5.13
$\mathcal{B}(D^0 \rightarrow \eta' \pi^- e^+ \nu_e)(\times 10^{-5})$		0.52 ± 0.32
$\mathcal{B}(D^+ \rightarrow \overline{K}^0 K^0 e^+ \nu_e)(\times 10^{-5})$		3.07 ± 1.57
$\mathcal{B}(D^+ \rightarrow K^+ K^- e^+ \nu_e)(\times 10^{-5})$		1.31 ± 0.64
$\mathcal{B}(D^+ \rightarrow \pi^+\pi^- e^+ \nu_e)(\times 10^{-3})$	2.45 ± 0.20	3.12 ± 0.53
$\mathcal{B}(D^+ \rightarrow \pi^0 \pi^0 e^+ \nu_e)(\times 10^{-4})$		3.09 ± 1.88
$\mathcal{B}(D^+ \rightarrow \eta \pi^0 e^+ \nu_e)(\times 10^{-5})$		9.56 ± 4.45
$\mathcal{B}(D^+ \rightarrow \eta' \pi^0 e^+ \nu_e)(\times 10^{-6})$		7.56 ± 4.50
$\mathcal{B}(D^+ \rightarrow \eta \eta e^+ \nu_e)(\times 10^{-6})$		2.74 ± 1.99
$\mathcal{B}(D^+ \rightarrow \eta \eta' e^+ \nu_e)(\times 10^{-8})$		3.20 ± 1.92
$\mathcal{B}(D_s^+\to K^+\pi^-e^+\nu_e)(\times 10^{-3})$		1.67 ± 0.18
$\mathcal{B}(D_s^+\to K^0\pi^0e^+\nu_e)(\times 10^{-4})$		8.26 ± 0.87
$\mathcal{B}(D_s^+ \rightarrow \eta K^0 e^+ \nu_e)(\times 10^{-5})$		1.51 ± 0.95
$\mathcal{B}(D_s^+ \rightarrow \eta' K^0 e^+ \nu_e)(\times 10^{-7})$		4.32 ± 2.88
$\mathcal{B}(D^0\to K^-K^0\mu^+\nu_\mu)(\times 10^{-5})$		1.03 ± 0.53
$\mathcal{B}(D^0\to\pi^0\pi^-\mu^+\nu_\mu)(\times10^{-3})$		1.76 ± 0.10
$\mathcal{B}(D^0 \rightarrow \eta \pi^- \mu^+ \nu_\mu)(\times 10^{-5})$		15.00 ± 4.78
$\mathcal{B}(D^0\to\eta^\prime\pi^-\mu^+\nu_\mu)(\times 10^{-5})$		0.45 ± 0.28
$\mathcal{B}(D^+ \rightarrow \overline{K}^0 K^0 \mu^+ \nu_\mu)(\times 10^{-5})$		2.71 ± 1.41
$\mathcal{B}(D^+\to K^+K^-\mu^+\nu_\mu)(\times 10^{-5})$		1.08 ± 0.53
$\mathcal{B}(D^+ \rightarrow \pi^+\pi^-\mu^+\nu_\mu)(\times 10^{-3})$		2.97 ± 0.50
$\mathcal{B}(D^+ \to \pi^0 \pi^0 \mu^+ \nu_\mu) (\times 10^{-4})$		2.90 ± 1.76
$\mathcal{B}(D^+\to\eta\pi^0\mu^+\nu_\mu)(\times10^{-5})$		8.60 ± 4.16
$\mathcal{B}(D^+\to\eta^\prime\pi^0\mu^+\nu_\mu)(\times10^{-6})$		6.58 ± 3.95
$\mathcal{B}(D^+ \rightarrow \eta \eta \mu^+ \nu_\mu)(\times 10^{-6})$		2.47 ± 1.78
$\mathcal{B}(D^+ \to \eta \eta' \mu^+ \nu_\mu) (\times 10^{-8})$		1.98 ± 1.18
$\mathcal{B}(D_s^+\to K^+\pi^-\mu^+\nu_\mu)(\times 10^{-3})$		1.58 ± 0.17
$\mathcal{B}(D_s^+ \rightarrow K^0 \pi^0 \mu^+ \nu_\mu)(\times 10^{-4})$		7.83 ± 0.82
$\mathcal{B}(D_s^+\to\eta K^0\mu^+\nu_\mu)(\times 10^{-5})$		1.40 ± 0.88
$\mathcal{B}(D_s^+ \rightarrow \eta' K^0 \mu^+ \nu_\mu)(\times 10^{-7})$		3.39 ± 2.26

Vector resonant contributions are dominant

$$D^{0} \to \pi^{-} \overline{K}^{0} \ell^{+} \nu_{\ell}, \pi^{0} K^{-} \ell^{+} \nu_{\ell}, \pi^{0} \pi^{-} \ell^{+} \nu_{\ell}, D^{+} \to \pi^{+} K^{-} \ell^{+} \nu_{\ell}, \pi^{0} \overline{K}^{0} \ell^{+} \nu_{\ell}, \pi^{+} \pi^{-} \ell^{+} \nu_{\ell}, \pi^{0} \overline{K}^{0} \ell^{+} \nu^{+} \nu_{\ell}, \pi^{0} \overline{K}^{0} \ell^{+} \nu^{+} \nu$$

$$D_s^+ \to K^+ K^- \ell^+ \nu_\ell, K^0 \overline{K}^0 \ell^+ \nu_\ell, K^+ \pi^- \ell^+ \nu_\ell, K^0 \pi^0 \ell^+ \nu_\ell$$

> All three kinds of contributions are important

$$D^0 \to \eta \pi^- \ell^+ \nu_\ell$$

Both the non-resonant and the scalar resonant contributions are important

$$D^{0} \to K^{-} K^{0} \ell^{+} \nu_{\ell}, \eta' \pi^{-} \ell^{+} \nu_{\ell}$$
$$D^{+} \to \overline{K}^{0} K^{0} \ell^{+} \nu_{\ell}, \pi^{0} \pi^{0} \ell^{+} \nu_{\ell}, \eta \pi^{0} \ell^{+} \nu_{\ell}, \eta' \pi^{0} \ell^{+} \nu_{\ell}$$

1. Motivation

2. Three body semileptonic charm decays $D \rightarrow P/V/S\ell^+ v_\ell$

3. Four body semileptonic charm decays $D \rightarrow P_1 P_2 \ell^+ v_\ell$

4. Conclusion

✓ SU(3) Flavor Symmetry approach works well in the $D \rightarrow P/V\ell^+\nu_\ell$ and $D \rightarrow P_1P_2\ell^+\nu_\ell$.

 Predicted the not-yet-measured observables, and some of them are obtained for the first time.

✓ Our predictions of $D \to S\ell^+\nu_\ell$, $D \to P_1P_2\ell^+\nu_\ell$ could be tested at BESIII, LHCb and Belle-II.

2. Three body semileptonic decays

2.1 Effective Hamiltonian

2.2 $D \rightarrow P\ell^+ \nu$ decays

2.3 $D \rightarrow V \ell^+ \nu$ decays

2.4 $D \rightarrow S \ell^+ \nu$ decays

2.1 Effective Hamiltonian

$$\mathcal{H}_{eff}(c \to q\ell^+ \nu_\ell) = \frac{G_F}{\sqrt{2}} V_{cq}^* \bar{q} \gamma^\mu (1 - \gamma_5) c \ \bar{\nu_\ell} \gamma_\mu (1 - \gamma_5) \ell,$$

$$\mathcal{M}(D \to M\ell^+ \nu_\ell) = \frac{G_F}{\sqrt{2}} V_{cb} \sum_{mm'} g_{mm'} L_m^{\lambda_\ell \lambda_\nu} H_{m'}^{\lambda_M},$$

$$L_{m}^{\lambda_{\ell}\lambda_{\nu}} = \epsilon_{\alpha}(m)\bar{\nu}_{\ell}\gamma^{\alpha}(1-\gamma_{5})\ell,$$

$$H_{m'}^{\lambda_{M}} = \begin{cases} \epsilon_{\beta}^{*}(m')\langle P/S(p_{P/S})|\bar{q}\gamma^{\beta}(1-\gamma_{5})c|D(p_{D})\rangle \\ \epsilon_{\beta}^{*}(m')\langle V(p_{V},\epsilon^{*})|\bar{q}\gamma^{\beta}(1-\gamma_{5})c|D(p_{D})\rangle \end{cases},$$
form factors
$$SU(3) \text{ flavor symmetry}$$

Observables

$$\begin{aligned} \frac{d\mathcal{B}(D_{(s)} \to M\ell^+\nu_{\ell})}{dq^2} &= \frac{\tau_D G_F^2 |V_{cq}|^2 \lambda^{1/2} (q^2 - m_{\ell}^2)^2}{24(2\pi)^3 M_{D_{(s)}}^3 q^2} \mathcal{H}_{\text{total}}, \\ \text{lepton flavor universality :} & \mathcal{H}_{\text{total}} \equiv (\mathcal{H}_U + \mathcal{H}_L) \left(1 + \frac{m_{\ell}^2}{2q^2}\right) + \frac{3m_{\ell}^2}{2q^2} \mathcal{H}_S. \\ R^{\mu/e} &= \frac{\int_{q_{min}}^{q_{max}} d\mathcal{B}(D_{(s)} \to M\mu^+\nu_{\mu})/dq^2}{\int_{q_{min}}^{q_{max}} d\mathcal{B}(D_{(s)} \to Me^+\nu_e)/dq^2} \end{aligned}$$

forward-backward asymmetries:

$$A_{FB}^{\ell}(q^2) = \ rac{3}{4} rac{\mathcal{H}_P - rac{2m_{\ell}^2}{q^2} \mathcal{H}_{SL}}{\mathcal{H}_{ ext{total}}}$$

longitudinal polarizations of I⁺: $P_L^{\ell}(q^2) = \frac{(\mathcal{H}_U + \mathcal{H}_L) \left(1 - \frac{m_{\ell}^2}{2q^2}\right) - \frac{3m_{\ell}^2}{2q^2} \mathcal{H}_S}{\mathcal{H}_{\text{total}}}$

longitudinal polarization fractions of V:

$$F_L(q^2) = \frac{\mathcal{H}_L\left(1 + \frac{m_\ell^2}{2q^2}\right) + \frac{3m_\ell^2}{2q^2}\mathcal{H}_S}{\mathcal{H}_{\text{total}}}$$

lepton-side convexity parameters:

$$C_F^{\ell}(q^2) = \frac{3}{4} \left(1 - \frac{m_{\ell}^2}{q^2} \right) \frac{\mathcal{H}_U - 2\mathcal{H}_L}{\mathcal{H}_{\text{total}}}$$

Mesons M_{j}^{i} i = 1, 2, 3 for u, d, s

,

$$D_i = \left(D^0(c\bar{u}), \ D^+(c\bar{d}), \ D^+_s(c\bar{s}) \right)$$

$$P = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} + \frac{\eta_{1}}{\sqrt{3}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} + \frac{\eta_{1}}{\sqrt{3}} & K^{0} \\ K^{-} & \overline{K}^{0} & -\frac{2\eta_{8}}{\sqrt{6}} + \frac{\eta_{1}}{\sqrt{3}} \end{pmatrix},$$
$$V = \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega_{8}}{\sqrt{6}} + \frac{\omega_{1}}{\sqrt{3}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega_{8}}{\sqrt{6}} + \frac{\omega_{1}}{\sqrt{3}} & K^{*0} \\ K^{*-} & \overline{K}^{*0} & -\frac{2\omega_{8}}{\sqrt{6}} + \frac{\omega_{1}}{\sqrt{3}} \end{pmatrix}$$

$\left(\phi \right)$	_	$\left(\cos \theta_V \right)$	$-sin heta_V$) (ω_8	
$\left(\omega \right)$	_	$\langle sin \theta_V$	$cos \theta_V$) (ω_1	,

Scalar with two quark picture:

$$S = \begin{pmatrix} \frac{a_0^0}{\sqrt{2}} + \frac{\sigma}{\sqrt{2}} & a_0^+ & K_0^+ \\ a_0^- & -\frac{a_0^0}{\sqrt{2}} + \frac{\sigma}{\sqrt{2}} & K_0^0 \\ K_0^- & \overline{K}_0^0 & f_0 \end{pmatrix}$$
$$\begin{pmatrix} f_0(980) \\ f_0(500) \end{pmatrix} = \begin{pmatrix} \cos\theta_S & \sin\theta_S \\ -\sin\theta_S & \cos\theta_S \end{pmatrix} \begin{pmatrix} f_0 \\ \sigma \end{pmatrix}$$

Scalar with four quark picture:

$$\sigma = u\bar{u}d\bar{d}, \qquad f_0 = (u\bar{u} + d\bar{d})s\bar{s}/\sqrt{2},$$

$$a_0^0 = (u\bar{u} - d\bar{d})s\bar{s}/\sqrt{2}, \qquad a_0^+ = u\bar{d}s\bar{s}, \qquad a_0^- = d\bar{u}s\bar{s},$$

$$K_0^+ = u\bar{s}d\bar{d}, \qquad K_0^0 = d\bar{s}u\bar{u}, \qquad \bar{K}_0^0 = s\bar{d}u\bar{u}, \qquad K_0^+ = s\bar{u}d\bar{d},$$

$$S_{jm}^{im} \qquad \left(\begin{array}{c} f_0(980)\\ f_0(500) \end{array}\right) = \left(\begin{array}{c} \cos\phi_S & \sin\phi_S\\ -\sin\phi_S & \cos\phi_S \end{array}\right) \left(\begin{array}{c} f_0\\ \sigma \end{array}\right)$$

$$28$$

Hadronic helicity amplitude:

$$\begin{cases} H(D \to M\ell^+ \nu_\ell)^{2q} = c_0^M D_i M_j^i H^j \\ \Delta H(D \to M\ell^+ \nu_\ell)^{2q} = c_1^M D_a W_i^a M_j^i H^j + c_2^M D_i M_a^i W_j^a H^j , \end{cases}$$

$$\begin{aligned} H(D \to S\ell^+ \nu_\ell)^{4q} &= c_0'^S D_i S_{jm}^{im} H^j \\ \Delta H(D \to S\ell^+ \nu_\ell)^{4q} &= c_1'^S D_a W_i^a S_{jm}^{im} H^j + c_2'^S D_i S_{am}^{im} W_j^a H^j + c_1'^S D_i S_{ja}^{im} W_m^a H^j. \end{aligned}$$

 C_i, C'_i : nonperturbative coefficients H^i : CKM matrix elements

$$W = (W_j^i) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix},$$

2.2 $D \rightarrow P\ell^+\nu_\ell$ decays Amplitudes:

TABLE I: The hadronic helicity amplitudes for the $D \to P\ell^+\nu$ decays including both the SU(3) flavor symmetry and the SU(3) flavor breaking contributions. $A_1 \equiv c_0^P + c_1^P - 2c_2^P$, $A_2 \equiv c_0^P - 2c_1^P - 2c_2^P$, $A_3 \equiv c_0^P + c_1^P + c_2^P$, $A_4 \equiv c_0^P - 2c_1^P + c_2^P$. $A_1 = A_2 = A_3 = A_4 = c_0^P$ if neglecting the SU(3) flavor breaking c_1^P and c_2^P terms.

Hadronic helicity amplitudes	SU(3) flavor amplitudes
$H(D^0\to K^-\ell^+\nu_\ell)$	$A_1 V_{cs}^*$
$H(D^+\to \overline{K}^0\ell^+\nu_\ell)$	$A_1 V_{cs}^*$
$H(D_s^+ \to \eta \ell^+ \nu_\ell)$	$\left(-\cos\theta_P\sqrt{2/3}-\sin\theta_P/\sqrt{3}\right)A_2V_{cs}^*$
$H(D_s^+ \to \eta' \ell^+ \nu_\ell)$	$\left(-\sin\theta_P\sqrt{2/3}+\cos\theta_P/\sqrt{3} ight)A_2V_{cs}^*$
$H(D_s^+ \to \pi^0 \ell^+ \nu_\ell)$	$-\delta \left(-\cos \theta_P \sqrt{2/3} - \sin \theta_P / \sqrt{3}\right) A_2 V_{cs}^*$
$H(D^0\to\pi^-\ell^+\nu_\ell)$	$A_3V_{cd}^*$
$H(D^+ \to \pi^0 \ell^+ \nu_\ell)$	$-\frac{1}{\sqrt{2}}A_{3}V_{cd}^{*}$
$H(D^+ \to \eta \ell^+ \nu_\ell)$	$\left(\cos\theta_P/\sqrt{6} - \sin\theta_P/\sqrt{3}\right)A_3V_{cd}^*$
$H(D^+ \to \eta' \ell^+ \nu_\ell)$	$\left(sin heta_P/\sqrt{6}+cos heta_P/\sqrt{3} ight)A_3V_{cd}^*$
$H(D_s^+\to K^0\ell^+\nu_\ell)$	$A_4 V_{cd}^*$

Branching ratios:

branching ranos	Exp. data	Ones in C_1	Ones in C_2	Ones in C_3	Ones in C_4	Previous ones
$\mathcal{B}(D^+ \to \overline{K}^0 e^+ \nu_e)(\times 10^{-2})$	8.72 ± 0.18	8.84 ± 0.06	8.83 ± 0.07	8.84 ± 0.06	8.83 ± 0.07	
$3(D^+ \to \pi^0 e^+ \nu_e)(\times 10^{-3})$	3.72 ± 0.34	3.75 ± 0.05	$5.40 \pm 1.33^{\dagger}$	$5.04\pm0.12^\dagger$	3.70 ± 0.11	
$\mathcal{B}(D^+ \to \eta e^+ \nu_e)(\times 10^{-3})$	1.11 ± 0.14	1.15 ± 0.05	1.20 ± 0.05	1.20 ± 0.05	0.92 ± 0.08	
$\mathcal{B}(D^+ \to \eta' e^+ \nu_e)(\times 10^{-4})$	2.0 ± 0.8	2.59 ± 0.14	2.22 ± 0.34	2.09 ± 0.14	1.50 ± 0.20	
$3(D^0 \to K^- e^+ \nu_e)(\times 10^{-2})$	3.549 ± 0.052	3.52 ± 0.02	3.52 ± 0.03	3.52 ± 0.03	3.52 ± 0.02	
$\mathcal{B}(D^0 \rightarrow \pi^- e^+ \nu_e)(\times 10^{-3})$	2.91 ± 0.08	2.95 ± 0.03	$4.23 \pm 1.03^{\dagger}$	$3.97\pm0.09^\dagger$	2.89 ± 0.06	
$\mathcal{B}(D_s^+ \to \eta e^+ \nu_e)(\times 10^{-2})$	2.32 ± 0.16	2.37 ± 0.11	2.34 ± 0.14	2.36 ± 0.12	2.32 ± 0.16	
$\mathcal{B}(D_s^+ \to \eta' e^+ \nu_e)(\times 10^{-3})$	8.0 ± 1.4	9.05 ± 0.04	8.25 ± 1.13	8.04 ± 0.43	8.02 ± 1.38	
$\mathcal{B}(D_s^+ \to K^0 e^+ \nu_e)(\times 10^{-3})$	3.4 ± 0.8	3.10 ± 0.08	3.56 ± 0.39	3.54 ± 0.12	3.40 ± 0.80	
$3(D_s^+ \to \pi^0 e^+ \nu_e) (\times 10^{-5})$		1.51 ± 0.07	2.10 ± 0.56	1.96 ± 0.10	1.92 ± 0.13	2.65 ± 0.38 [7
$\mathcal{S}(D^+ \to \overline{K}^0 \mu^+ \nu_\mu) (\times 10^{-2})$	8.76 ± 0.38	8.56 ± 0.06	8.69 ± 0.15	8.61 ± 0.06	8.61 ± 0.06	
$\mathcal{B}(D^+ ightarrow \pi^0 \mu^+ u_\mu)(imes 10^{-3})$	3.50 ± 0.30	3.67 ± 0.05	$5.32 \pm 1.31^\dagger$	$4.96\pm0.12^\dagger$	3.64 ± 0.10	
$\mathcal{B}(D^+ \to \eta \mu^+ \nu_\mu)(\times 10^{-3})$	1.04 ± 0.22	1.11 ± 0.05	1.18 ± 0.07	1.17 ± 0.05	0.90 ± 0.08	1.21 [7] 0.75±0.15 [79
$\mathcal{B}(D^+ \to \eta' \mu^+ \nu_\mu) (\times 10^{-4})$		2.42 ± 0.13	2.10 ± 0.33	1.96 ± 0.13	1.41 ± 0.19	2.11 [7] 1.06±0.20 [79
$S(D^0 \to K^- \mu^+ \nu_\mu)(\times 10^{-2})$	3.41 ± 0.08	3.41 ± 0.02	3.44 ± 0.05	3.43 ± 0.02	3.43 ± 0.02	-
$S(D^0 \to \pi^- \mu^+ \nu_\mu)(\times 10^{-3})$	2.67 ± 0.24	2.89 ± 0.02	$4.17 \pm 1.01^{\dagger}$	$3.90\pm0.09^\dagger$	2.85 ± 0.06	
$\mathcal{B}(D_s^+ \to \eta \mu^+ \nu_\mu)(\times 10^{-2})$	2.4 ± 1.0	2.30 ± 0.10	2.30 ± 0.17	2.31 ± 0.12	2.26 ± 0.16	
$\mathcal{B}(D_s^+ \to \eta' \mu^+ \nu_\mu)(\times 10^{-2})$	1.1 ± 1.0	0.86 ± 0.03	0.79 ± 0.11	0.77 ± 0.04	0.76 ± 0.13	
$\mathcal{B}(D_s^+ \to K^0 \mu^+ \nu_\mu)(\times 10^{-3})$		3.01 ± 0.08	3.51 ± 0.38	3.46 ± 0.11	3.33 ± 0.78	3.9 [7] 3.85±0.76 [79
$\mathcal{B}(D^+ \rightarrow \pi^0 u^+ u_{\odot}) (\times 10^{-5})$		1.48 ± 0.07	2.09 ± 0.53	1.93 ± 0.10	1.89 ± 0.13	

FIG. 1: The q^2 dependence of the differential branching ratios for some $D \to P\ell^+\nu_\ell$ with present experimental bounds.

2.3 $D \rightarrow V \ell^+ \nu_{\ell}$ decays

Amplitudes:

TABLE IV: The hadronic helicity amplitudes for $D \to V\ell^+\nu$ decays including both the SU(3) flavor symmetry and the SU(3) flavor breaking contributions. $B_1 = c_0^V + c_1^V - 2c_2^V$, $B_2 = c_0^V - 2c_1^V - 2c_2^V$, $B_3 = c_0^V + c_1^V + c_2^V$, $B_4 = c_0^V - 2c_1^V + c_2^V$. If neglecting the SU(3) flavor breaking c_1^V and c_2^V terms, $B_1 = B_2 = B_3 = B_4 = c_0^V$.

Hadronic helicity amplitudes	SU(3) IRA amplitudes					
$H(D^0\to K^{*-}\ell^+\nu_\ell)$	$B_1 V_{cs}^*$					
$H(D^+ \to \overline{K}^{*0} \ell^+ \nu_\ell)$	$B_1 V_{cs}^*$					
$H(D_s^+ o \phi \ell^+ \nu_\ell)$	$\left(-\cos\theta_V\sqrt{2/3}-\sin\theta_V/\sqrt{3}\right)B_2V_{cs}^*$					
$H(D_s^+ \to \omega \ell^+ \nu_\ell)$	$\left(-\sin\theta_V\sqrt{2/3}+\cos\theta_V/\sqrt{3}\right)B_2V_{cs}^*$					
$H(D^0\to\rho^-\ell^+\nu_\ell)$	$B_3V_{cd}^*$					
$H(D^+\to\rho^0\ell^+\nu_\ell)$	$-rac{1}{\sqrt{2}}B_3V_{cd}^*$					
$H(D^+ o \phi \ell^+ u_\ell)$	$\left(cos heta_V/\sqrt{6}-sin heta_V/\sqrt{3} ight)B_3V_{cd}^*$					
$H(D^+ o \omega \ell^+ \nu_\ell)$	$\left(sin\theta_V/\sqrt{6}+cos\theta_V/\sqrt{3}\right)B_3V_{cd}^*$					
$H(D_s^+ \to K^{*0} \ell^+ \nu_\ell)$	$B_4 V_{cd}^*$					

Branching ratios:

TABLE V: Branching ratios of the $D \to V\ell^+\nu$ within 2σ errors. [†]The experimental data of $\mathcal{B}(D^+ \to \omega e^+\nu_e)$ and $\mathcal{B}(D^0 \to \rho^-\mu^+\nu_\mu)$ from PDG [1] are not used in the $C_{1,2,3}$ cases.

Branching ratios	Exp. data	Ones in C1	Ones in C_2	Ones in C_3	Unes in Ca
$\mathcal{B}(D^+ \to \overline{K}^{*0} e^+ \nu_e) (\times 10^{-2})$	5.40 ± 0.20	5.44 ± 0.15	5.42 ± 0.18	5.36 ± 0.08	5.44 ± 0.16
$\mathcal{B}(D^+ \to \rho^0 e^+ \nu_e) (\times 10^{-3})$	$2.18^{+0.34}_{-0.50}$	2.31 ± 0.07	2.39 ± 0.13	2.33 ± 0.05	1.83 ± 0.15
$\mathcal{B}(D^+ \to \omega e^+ \nu_e)(\times 10^{-3})$	1.69 ± 0.22	$2.24\pm0.07^{\dagger}$	$2.33\pm0.12^\dagger$	$2.26\pm0.04^\dagger$	1.77 ± 0.14
$\mathcal{B}(D^+ \to \phi e^+ \nu_e)(\times 10^{-7})$	< 130	3.13 ± 0.12	3.11 ± 0.19	3.07 ± 0.07	2.38 ± 0.23
$\mathcal{B}(D^0 \to K^{*-} e^+ \nu_e)(\times 10^{-2})$	2.15 ± 0.32	2.12 ± 0.09	2.13 ± 0.10	2.08 ± 0.06	2.13 ± 0.10
$\mathcal{B}(D^0\to\rho^-e^+\nu_e)(\times 10^{-3})$	1.50 ± 0.24	1.79 ± 0.08	1.86 ± 0.11	1.80 ± 0.06	1.41 ± 0.13
$\mathcal{B}(D_s^+ \to \phi e^+ \nu_e) (\times 10^{-2})$	2.39 ± 0.32	2.46 ± 0.12	2.43 ± 0.14	2.40 ± 0.10	2.39 ± 0.32
$\mathcal{B}(D_s^+\to \omega e^+\nu_e)(\times 10^{-5})$	< 200	2.45 ± 0.13	2.56 ± 0.20	2.47 ± 0.10	2.49 ± 0.38
$\mathcal{B}(D_s^+ \to K^{*0} e^+ \nu_e) (\times 10^{-3})$	2.15 ± 0.56	2.17 ± 0.10	2.25 ± 0.13	2.17 ± 0.08	2.15 ± 0.56
$\mathcal{B}(D^+ \to \overline{K}^{*0} \mu^+ \nu_\mu) (\times 10^{-2})$	5.27 ± 0.30	5.12 ± 0.15	5.13 ± 0.16	5.05 ± 0.08	5.12 ± 0.15
$\mathcal{B}(D^+\to\rho^0\mu^+\nu_\mu)(\times10^{-3})$	2.4 ± 0.8	2.19 ± 0.07	2.29 ± 0.13	2.22 ± 0.04	1.74 ± 0.14
$\mathcal{B}(D^+ \to \omega \mu^+ \nu_\mu) (\times 10^{-3})$	1.77 ± 0.42	2.13 ± 0.06	2.23 ± 0.12	2.15 ± 0.04	1.68 ± 0.13
$\mathcal{B}(D^+ \to \phi \mu^+ \nu_\mu) (\times 10^{-7})$		2.89 ± 0.11	2.89 ± 0.17	2.84 ± 0.07	2.20 ± 0.21
$\mathcal{B}(D^0\to K^{*-}\mu^+\nu_\mu)(\times 10^{-2})$	1.89 ± 0.48	1.99 ± 0.09	2.01 ± 0.09	1.96 ± 0.06	2.01 ± 0.10
$\mathcal{B}(D^0\to\rho^-\mu^+\nu_\mu)(\times10^{-3})$	1.35 ± 0.26	$1.70\pm0.07^{\dagger}$	$1.78\pm0.11^\dagger$	$1.72\pm0.06^\dagger$	1.34 ± 0.13
$\mathcal{B}(D_s^+ \to \phi \mu^+ \nu_\mu) (\times 10^{-2})$	1.9 ± 1.0	2.30 ± 0.12	2.29 ± 0.12	2.25 ± 0.09	2.24 ± 0.30
$\mathcal{B}(D_s^+\to\omega\mu^+\nu_\mu)(\times 10^{-5})$		2.34 ± 0.12	2.47 ± 0.19	2.37 ± 0.09	2.38 ± 0.36
$\mathcal{B}(D_s^+ \to K^{*0} \mu^+ \nu_\mu) (\times 10^{-3})$		2.06 ± 0.10	2.15 ± 0.13	2.07 ± 0.08	2.05 ± 0.53

2.4 $D \rightarrow S \ell^+ \nu_{\ell}$ decays

Amplitudes:

TABLE VIII: The hadronic helicity amplitudes for $D \to S\ell^+ \nu$ decays including both the SU(3) flavor symmetry and the SU(3) flavor breaking contributions. In the two quark picture of the scalar mesons, $E_1 \equiv c_0^S + c_1^S - 2c_2^S$, $E_2 \equiv c_0^S - 2c_1^S - 2c_2^S$, $E_3 \equiv c_0^S + c_1^S + c_2^S$, $E_4 \equiv c_0^S - 2c_1^S + c_2^S$. $E_1 = E_2 = E_3 = E_4 = c_0^S$ if neglecting the SU(3) flavor breaking c_1^S and c_2^S terms. In the four quark picture of the scalar mesons, $E_1' \equiv c_0'^S + c_1'^S - 2c_2'^S + c_3'^S$, $E_2' \equiv c_0'^S - 2c_1'^S + c_2'^S - 2c_3'^S$, $E_4' \equiv c_0'^S + c_1'^S + c_2'^S + c_1'^S + c_2'^S + c_3'^S$, $E_2' \equiv c_0'^S - 2c_1'^S - 2c_2'^S + c_3'^S$, $E_3' \equiv c_0'^S + c_1'^S + c_2'^S - 2c_3'^S$, $E_4' \equiv c_0'^S + c_1'^S + c_2'^S + c_3'^S$, $E_1' \equiv c_0'^S + c_1'^S + c_2'^S + c_3'^S$, $E_2' \equiv c_0'^S$ if neglecting the SU(3) flavor breaking $c_1'^S$, $c_2'^S$ and $c_3'^S$ terms.

Hadronic helicity amplitudes	ones for two-quark scenario	ones for four-quark scenario			
$H(D^0 o K_0^- \ell^+ u_\ell)$	$E_1 V_{cs}^*$	$E_1'V_{cs}^*$			
$H(D^+ \to \overline{K}^0_0 \ell^+ \nu_\ell)$	$E_1 V_{cs}^*$	$E_1^\prime V_{cs}^*$			
$H(D_s^+ o f_0 \ell^+ u_\ell)$	$E_2 V_{cs}^*$	$\sqrt{2}E_2'V_{cs}^*$			
$H(D_s^+ \to f_0(980)\ell^+\nu_\ell)$	$cos heta_S E_2 V_{cs}^*$	$\sqrt{2}cos\phi_S \ E_2'V_{cs}^*$			
$H(D_s^+ \to f_0(500)\ell^+\nu_\ell)$	$-sin heta_S \ E_2 V_{cs}^*$	$-\sqrt{2}sin\phi_S \ E_2'V_{cs}^*$			
$H(D^0 o a_0^- \ell^+ u_\ell)$	$E_3V_{cd}^*$	$E_3^\prime V_{cd}^st$			
$H(D^+ ightarrow a_0^0 \ell^+ u_\ell)$	$-rac{1}{\sqrt{2}}E_3V_{cd}^*$	$-rac{1}{\sqrt{2}}E_3'V_{cd}^*$			
$H(D^+ o f_0 \ell^+ u_\ell)$	0	$rac{1}{\sqrt{2}}E_3'V_{cd}^*$			
$H(D^+ o \sigma \ell^+ u_\ell)$	$\frac{1}{\sqrt{2}}E_3V_{cd}^*$	$E_4^\prime V_{cd}^*$			
$H(D^+ \to f_0(980)\ell^+\nu_\ell)$	$\frac{1}{\sqrt{2}}sin heta_S \ E_3V_{cd}^*$	$(\frac{1}{\sqrt{2}}E'_3cos\phi_S + E'_4sin\phi_S)V^*_{cd}$			
$H(D^+ \to f_0(500)\ell^+\nu_\ell)$	$\frac{1}{\sqrt{2}}cos heta_S \ E_3V_{cd}^*$	$(-\frac{1}{\sqrt{2}}E'_3sin\phi_S + E'_4cos\phi_S)V^*_{cd}$			
$H(D_s^+ o K_0^0 \ell^+ u_\ell)$	$E_4 V_{cd}^*$	$E_5'V_{cd}^*$			

Experimental data:

 $\mathcal{B}(D_s^+ \to f_0(980)e^+\nu_e) = (2.3 \pm 0.8) \times 10^{-3}$ $\mathcal{B}(D_s^+ \to f_0(980)e^+\nu_e, f_0(980) \to \pi^+\pi^-) = (1.30 \pm 0.63) \times 10^{-3}$ [81], $\mathcal{B}(D^+_{s} \to f_0(980)e^+\nu_e, f_0(980) \to \pi^0\pi^0) = (7.9 \pm 2.9) \times 10^{-4}$ [82], $\mathcal{B}(D^0 \to a_0(980)^- e^+ \nu_e, a_0(980)^- \to \eta \pi^-) = (1.33^{+0.68}_{-0.60}) \times 10^{-4}$ [1], $\mathcal{B}(D^+ \to a_0(980)^0 e^+ \nu_e, a_0(980)^0 \to \eta \pi^0) = (1.7^{+1.6}_{-1.4}) \times 10^{-4}$ [1], $\mathcal{B}(D^+ \to f_0(500)e^+\nu_e, f_0(500) \to \pi^+\pi^-) = (6.3 \pm 1.0) \times 10^{-4}$ [1], $\mathcal{B}(D^+ \to f_0(980)e^+\nu_e, f_0(980) \to \pi^+\pi^-) < 2.8 \times 10^{-5}$ [83], $\mathcal{B}(D_s^+ \to f_0(500)e^+\nu_e, f_0(500) \to \pi^0\pi^0) < 6.4 \times 10^{-4}$ [82].

Branching ratios:

TABLE IX: Branching ratios of $D \to S\ell^+\nu$ decays within 2σ errors. As given in Ref. [80], g'_4 and g_4 are strong coupling constants obtained by the SU(3) flavor symmetry in $S \to P_1P_2$ decays, "denotes the results with $\frac{g'_4}{g_4} > 0$, and "denotes ones with $\frac{g'_4}{g_4} < 0$, "denotes the results with two quark picture, and "denotes the results with four quark picture.

Branching ratios	ones	for 2q state in	as ₁ (1	08	es for 2g stat	e in S ₂	ones for 4q	ones for 4q	Previous ones
	$[25^\circ,40^\circ]$	$[140^\circ,165^\circ]$	$[-30^{\circ}, 30^{\circ}]$	$[25^{\circ}, 35^{\circ}]$	$[144^\circ,158^\circ]$	$22^\circ \leq \theta_S \leq 30^\circ$	state in S_1	state in S_2	3
$B(D^0 \to K_0^- e^+ \nu_e)(\times 10^{-3})$	3.38 ± 2.12	3.18 ± 2.05	2.57 ± 1.58	3.02 ± 1.11	3.00 ± 1.10	2.98 ± 1.05	1.11 ± 0.63	1.25 ± 0.45	$0.103 \pm 0.115^{\dagger}$ [67]
$\mathcal{B}(D^+ \rightarrow \overline{K}_0^0 e^+ \nu_e)(\times 10^{-3})$	8.66 ± 5.55	7.99 ± 5.02	7.02 ± 4.48	7.74 ± 2.88	7.78 ± 2.77	7.68 ± 2.78	2.85 ± 1.65	3.36 ± 1.25	$38.8 \pm 5.6^{\dagger}$ [67]
$\mathcal{B}(D_s^+ \to f_0(980)e^+\nu_e)(\times 10^{-3})$	2.30 ± 0.80	2.30 ± 0.80	2.30 ± 0.80	2.58 ± 0.52	2.57 ± 0.53	2.71 ± 0.39	2.30 ± 0.80	2.49 ± 0.61^6 2.54 ± 0.56^6	$2.1 \pm 0.2^{\dagger}$ [78], $2^{+0.5\dagger}_{-0.4}$ [84]
$\mathcal{B}(D_s^+ \to f_0(500)e^+\nu_e)(\times 10^{-3})$	6.73 ± 6.11	5.98 ± 5.75	3.25 ± 3.25	1.49 ± 0.43	1.45 ± 0.46	1.42 ± 0.50	0.37 ± 0.37	$\begin{array}{c} 0.31 {\pm} 0.31 {}^{\rm o} \\ 0.17 {\pm} 0.17 {}^{\rm o} \end{array}$	
$\mathcal{B}(D^0 \to K_0^- \mu^+ \nu_\mu)(\times 10^{-3})$	2.90 ± 1.84	2.73 ± 1.77	2.20 ± 1.36	2.59 ± 0.97	2.57 ± 0.96	2.56 ± 0.92	0.95 ± 0.54	1.09 ± 0.39	$0.103 \pm 0.115^{\dagger}$ [67]
$\mathcal{B}(D^+ \rightarrow \overline{K}^0_0 \mu^+ \nu_\mu)(\times 10^{-3})$	7.46 ± 4.81	6.87 ± 4.33	6.04 ± 3.88	6.65 ± 2.52	6.69 ± 2.43	6.59 ± 2.43	2.45 ± 1.43	2.89 ± 1.09	$38.8 \pm 5.6^{\dagger}$ [67]
$\mathcal{B}(D_s^+ \rightarrow f_0(980)\mu^+\nu_\mu)(\times 10^{-3})$	1.95 ± 0.70	1.95 ± 0.70	1.95 ± 0.69	2.20 ± 0.45	2.20 ± 0.45	2.32 ± 0.33	1.95 ± 0.70	$\begin{array}{c} 2.12 {\pm} 0.54^{\circ} \\ 2.16 {\pm} 0.49^{\circ} \end{array}$	$2.1 \pm 0.2^{\dagger}$ [78]
$\mathcal{B}(D_s^+ \to f_0(500)\mu^+\nu_\mu)(\times 10^{-3})$	6.21 ± 5.66	5.53 ± 5.32	3.01 ± 3.01	1.33 ± 0.39	1.31 ± 0.43	1.28 ± 0.46	0.34 ± 0.34	$\begin{array}{c} 0.29 {\pm} 0.29 {}^{\circ} \\ 0.16 {\pm} 0.16 {}^{\circ} \end{array}$	
$\mathcal{B}(D^0 \rightarrow a_0^- e^+ \nu_e)(\times 10^{-5})$	9.99 ± 6.54	9.56 ± 6.50	8.34 ± 5.67	9.22 ± 3.98	9.09 ± 3.65	9.17 ± 3.58	3.42 ± 2.06	4.32 ± 1.17	$16.8 \pm 1.5^{\dagger}$ [78], $40.8 \pm 13.7^{\dagger}$ [86], $24.4 \pm 3.0^{\dagger}$ [67]
$\mathcal{B}(D^+ \rightarrow a_0^0 e^+ \nu_e)(\times 10^{-5})$	13.09 ± 8.62	12.62 ± 8.67	10.89 ± 7.35	12.09 ± 5.19	11.81 ± 4.71	11.97 ± 4.66	4.49 ± 2.71	5.68 ± 1.52	21.8±3.8 [†] [78], 54.0 ^{+17.8†} [86] 6~8 [†] [85], 5~5.4 [‡] [85]
$B(D^+ \to f_0(980)e^+\nu_e)(\times 10^{-5})$	3.92 ± 2.92	3.48 ± 3.13	1.59 ± 1.59	2.62 ± 0.82	2.52 ± 0.94	2.40 ± 0.80	3.14 ± 1.98	$\substack{3.35 \pm 1.80^{\circ} \\ 3.89 \pm 1.35^{\circ}}$	$7.78 \pm 0.68^{\dagger}$ [78], $5.7 \pm 1.3^{\dagger}$ [87] $0.4 \sim 3.5^{\dagger}$ [85], $1.9 \sim 6.3^{\dagger}$ [85]
$\mathcal{B}(D^+ \to f_0(500)e^+\nu_e)(\times 10^{-4})$	4.05 ± 3.20	4.08 ± 3.10	4.21 ± 3.28	2.16 ± 0.96	2.59 ± 1.38	2.70 ± 1.28	4.97 ± 4.13	$\begin{array}{c} 4.97 {\pm} 3.34^{\circ} \\ 4.95 {\pm} 3.36^{\circ} \end{array}$	$0.4\sim 0.6^{\dagger}[85], 0.88\sim 1.4^{\natural}[85]$
$\mathcal{B}(D_s^+ \rightarrow K_0^0 e^+ \nu_c)(\times 10^{-4})$	3.73 ± 2.37	3.41 ± 2.13	2.99 ± 1.88	3.35 ± 1.21	3.32 ± 1.20	3.35 ± 1.15	1.25 ± 0.71	1.43 ± 0.51	$26.5 \pm 2.8^{\dagger}$ [67]
$\mathcal{B}(D^0 \to a_0^- \mu^+ \nu_\mu)(\times 10^{-5})$	8.25 ± 5.45	7.89 ± 5.42	6.91 ± 4.75	7.61 ± 3.37	7.51 ± 3.10	7.57 ± 3.04	2.83 ± 1.72	3.57 ± 0.99	$16.3 \pm 1.4^{\dagger} \ [78], 24.4 \pm 3.0^{\dagger} \ [67]$
$\mathcal{B}(D^+ \to a_0^0 \mu^+ \nu_\mu)(\times 10^{-5})$	10.83 ± 7.19	10.44 ± 7.23	9.04 ± 6.16	10.00 ± 4.41	9.76 ± 4.00	9.89 ± 3.97	3.73 ± 2.28	4.69 ± 1.30	$21.2 \pm 3.7^{\dagger}$ [78]
$\mathcal{B}(D^+ \to f_0(980)\mu^+\nu_\mu)(\times 10^{-5})$	3.23 ± 2.41	2.88 ± 2.60	1.32 ± 1.32	2.15 ± 0.70	2.09 ± 0.78	1.99 ± 0.66	2.56 ± 1.62	$\begin{array}{c} 2.74 {\pm} 1.43^{\circ} \\ 3.20 {\pm} 1.14^{\circ} \end{array}$	$7.87 \pm 0.67^{\dagger}$ [78]
$\mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu)(\times 10^{-4})$	3.69 ± 2.96	3.71 ± 2.86	3.84 ± 3.04	1.92 ± 0.88	2.32 ± 1.27	2.42 ± 1.19	4.54 ± 3.81	$\begin{array}{c} 4.52 {\pm} 3.10^4 \\ 4.49 {\pm} 3.12^5 \end{array}$	
$\mathcal{B}(D_s^+ \to K_0^0 \mu^+ \nu_{\mu})(\times 10^{-4})$	3.28 ± 2.10	3.00 ± 1.88	2.62 ± 1.66	2.94 ± 1.08	2.91 ± 1.06	2.94 ± 1.02	1.10 ± 0.63	1.26 ± 0.45	$26.5 \pm 2.8^{\dagger}$ [67]
	Branching ratios $\begin{split} & \mathcal{B}(D^0 \to K_0^- e^+ \nu_e) (\times 10^{-3}) \\ & \mathcal{B}(D^+ \to \overline{K}_0^0 e^+ \nu_e) (\times 10^{-3}) \\ & \mathcal{B}(D_s^+ \to f_0(980) e^+ \nu_e) (\times 10^{-3}) \\ & \mathcal{B}(D_s^+ \to f_0(980) e^+ \nu_e) (\times 10^{-3}) \\ & \mathcal{B}(D^0 \to K_0^- \mu^+ \nu_\mu) (\times 10^{-3}) \\ & \mathcal{B}(D^+ \to \overline{K}_0^0 \mu^+ \nu_\mu) (\times 10^{-3}) \\ & \mathcal{B}(D_s^+ \to f_0(980) \mu^+ \nu_\mu) (\times 10^{-3}) \\ & \mathcal{B}(D_s^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-3}) \\ & \mathcal{B}(D^0 \to a_0^- e^+ \nu_e) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to a_0^0 e^+ \nu_e) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(980) e^+ \nu_e) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) e^+ \nu_e) (\times 10^{-5}) \\ & \mathcal{B}(D^0 \to a_0^- \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^0 \to a_0^- \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to a_0^0 \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(980) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(980) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(980) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to f_0(500) \mu^+ \nu_\mu) (\times 10^{-5}) \\ & \mathcal{B}(D^+ \to$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $