

A Study on Neutrinoless Double Beta Decay and Neutron-Antineutron Oscillation

Yu-Qi Xiao

Central China Normal University

Based on:

- 1. Shao-Long Chen and Yu-Qi Xiao, *Neutrinoless Double Beta Decay in the Colored Zee-Babu Model*, [2205.13118].
- 2. Shao-Long Chen and Yu-Qi Xiao, *The Decomposition of Neutron-Antineutron Oscillation Operators*, [2211.02813].

OUTLINE

- Brief Introduction
- Neutrinoless Double Beta Decay ($|\Delta L| = 2$)
- Neutron-Antineutron Oscillation ($|\Delta B| = 2$)
- Summary

- Neutrinoless Double Beta Decay ($|\Delta L| = 2$)
- Neutron-Antineutron Oscillation ($|\Delta B| = 2$)
- Summary

Some open questions in the Standard Model:

★ Q The origin of neutrino mass?
★ Q The origin of matter-antimatter asymmetry?

Q The origin of Dark Matter?

Standard Model of Elementary Particles

We focus on the first two questions.

Q What is the origin of neutrino mass?

- Dirac neutrino: Higgs mechanism
- Majorana neutrino: seesaw mechanism

Lepton number violation $\Delta L = 2$

•For some nuclei, beta decay is prevented, while double beta decay is allowed.

e.g. ⁷⁶Ge \rightarrow ⁷⁶Se + 2 e^- + 2 $\bar{\nu}_e$.

 If neutrinos are Majorana particles, it is possible for neutrinoless double beta decay to occur. no evidence for the decay
 (KamLAND-Zen, GERDA, CUPID-1T, LEGEND-1000, ...)

2022.12.09

PART I

PART I

Q What is the origin of matter-antimatter asymmetry?(baryon asymmetry)

Three necessary conditions (1967, Andrei Sakharov)

- *B* violation (*B*: baryon number)
- CP violation
- Deviation from thermal equilibrium

Neutron-antineutron oscillation

@higgstan.com

Baryon number violation $\Delta B = -2$

2022.12.09

Direct search: free neutrons (ILL, NNBAR)

Indirect search: neutrons bound inside nuclei (SK, DUNE, HK)

no evidence for the oscillation

第19届重味物理和 CP 破坏研讨会

2006.04907

6

Proton decay Neutron-antineutron $(n - \bar{n})$ oscillation

- Brief Introduction
- Neutrinoless Double Beta Decay ($|\Delta L| = 2$)
- Neutron-Antineutron Oscillation ($|\Delta B| = 2$)
- Summary

The neutrinoless double beta decay in the colored Zee-Babu model

The Model & Constraints

• The colored Zee-Babu (cZB) model requires a leptoquark and a diquark to generate the neutrino mass.

• Three cases

case 1: a singlet LQ $S_1 \sim (\overline{3}, 1, 1/3)$ and a singlet DQ $\omega_1 \sim (6, 1, -2/3)$, case 2: a triplet LQ $S_3 \sim (\overline{3}, 3, 1/3)$ and a singlet DQ $\omega_1 \sim (6, 1, -2/3)$, case 3: a doublet LQ $\tilde{S}_2 \sim (3, 2, 1/6)$ and a triplet DQ $\omega_3 \sim (6, 3, 1/3)$. $-\mathcal{L}_{Y1} \supset y_{1SR}^{ij} \overline{(U_R^{i\alpha})^c} E_R^j S_1^{\overline{\alpha}} + y_{1SL}^{ij} \overline{(Q_L^{i\alpha})^c} i\sigma^2 L_L^j S_1^{\overline{\alpha}} + z_{1\omega}^{ij} \overline{(D_R^{i\alpha})^c} D_R^{j\beta} \omega_1^{*\overline{\alpha}\overline{\beta}} + \text{h.c.},$ $-\mathcal{L}_{Y2} \supset y_{3S}^{ij} \overline{(Q_L^{i\alpha})^c} i\sigma^2 (\sigma^k S_3^{k\overline{\alpha}}) L_L^j + z_{1\omega}^{ij} \overline{(D_R^{i\alpha})^c} D_R^{j\beta} \omega_1^{*\overline{\alpha}\beta} + \text{h.c.},$ $-\mathcal{L}_{Y3} \supset y_{2S}^{ij} \overline{D_R^{i\alpha}} (\tilde{S}_2^{\alpha})^T i\sigma^2 L_L^j + z_{3\omega}^{ij} \overline{(Q_L^{i\alpha})^c} i\sigma^2 (\sigma^k \omega_3^{*k\overline{\alpha}\beta})^T Q_L^{j\beta} + \text{h.c.}$

Neutrino mass

Texture setup

$$y_{1SL} = V^T \begin{pmatrix} \# & 0 & 0 \\ 0 & 0 & \# \\ \# & \# & \# \end{pmatrix}, \quad y_{1SR} = \begin{pmatrix} \# & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \# & 0 \end{pmatrix}, \quad z_{1\omega} = \begin{pmatrix} \# & 0 & 0 \\ 0 & 0 & \# \\ 0 & \# & \# \end{pmatrix}$$

#: short-range $0\nu\beta\beta$, #: $(g-2)_{\mu}$, #: standard $0\nu\beta\beta$, #: provide enough independent parameters

Constraints from tree-level flavor violation processes (four-fermion interaction)

$$\begin{split} \mathcal{L}_{\text{eff},1} = & \frac{1}{2M_{S_{1}}^{2}} \left\{ (V^{*}y_{1SL})^{*ki} (V^{*}y_{1SL})^{nj} [\overline{E^{i}} \gamma_{\mu} P_{L} E^{j}] [\overline{U^{k}} \gamma^{\mu} P_{L} U^{n}] \\ &+ y_{1SL}^{*ki} y_{1SL}^{nj} [\overline{\nu^{i}} \gamma_{\mu} P_{L} \nu^{j}] [\overline{D^{k}} \gamma^{\mu} P_{L} D^{n}] + y_{1SR}^{*ki} y_{1SR}^{nj} [\overline{E^{i}} \gamma_{\mu} P_{R} E^{j}] [\overline{U^{k}} \gamma^{\mu} P_{R} U^{n}] \\ &- \left[y_{1SL}^{*ki} (V^{*}y_{1SL})^{nj} [\overline{\nu^{i}} \gamma_{\mu} P_{L} E^{j}] [\overline{D^{k}} \gamma^{\mu} P_{L} U^{n}] + \text{h.c.} \right] \\ &+ \left[y_{1SR}^{*ki} y_{1SL}^{nj} [\overline{\nu^{i}} P_{R} E^{j}] [\overline{D^{k}} P_{R} U^{n}] + \text{h.c.} \right] \\ &+ \left[(V^{*}y_{1SL})^{*ki} y_{1SR}^{nj} [\overline{E^{i}} P_{R} E^{j}] [\overline{U^{k}} P_{R} U^{n}] + \text{h.c.} \right] \\ &- \frac{1}{4} \left[(Y^{*}y_{1SL})^{*ki} y_{1SR}^{nj} [\overline{P^{i}} \sigma_{\mu\nu} P_{R} E^{j}] [\overline{U^{k}} \sigma^{\mu\nu} P_{R} U^{n}] + \text{h.c.} \right] \\ &- \frac{1}{4} \left[(V^{*}y_{1SL})^{*ki} y_{1SR}^{nj} [\overline{E^{i}} \sigma_{\mu\nu} P_{R} E^{j}] [\overline{U^{k}} \sigma^{\mu\nu} P_{R} U^{n}] + \text{h.c.} \right] \\ &- \frac{1}{4} \left[(V^{*}y_{1SL})^{*ki} y_{1SR}^{nj} [\overline{E^{i}} \sigma_{\mu\nu} P_{R} E^{j}] [\overline{U^{k}} \sigma^{\mu\nu} P_{R} U^{n}] + \text{h.c.} \right] \\ &+ \left[(V^{*}y_{1SL})^{*ki} y_{1SR}^{nj} [\overline{E^{i}} \sigma_{\mu\nu} P_{R} E^{j}] [\overline{U^{k}} \sigma^{\mu\nu} P_{R} U^{n}] + \text{h.c.} \right] \\ &- \frac{1}{4} \left[(V^{*}y_{1SL})^{*ki} y_{1SR}^{nj} [\overline{E^{i}} \sigma_{\mu\nu} P_{R} E^{j}] [\overline{U^{k}} \sigma^{\mu\nu} P_{R} U^{n}] + \text{h.c.} \right] \\ &+ \left[(V^{*}y_{1SL})^{*ki} y_{1SR}^{nj} [\overline{E^{i}} \sigma_{\mu\nu} P_{R} E^{j}] [\overline{U^{k}} \sigma^{\mu\nu} P_{R} U^{n}] + \text{h.c.} \right] \\ &+ \left[V_{1SL}^{*ki} y_{1SR}^{nj} [\overline{E^{i}} \sigma_{\mu\nu} P_{R} E^{j}] [\overline{U^{k}} \sigma^{\mu\nu} P_{R} U^{n}] + \text{h.c.} \right] \\ &+ \left[V_{1SL}^{*ki} y_{1SR}^{nj} [\overline{E^{i}} \sigma_{\mu\nu} P_{R} E^{j}] [\overline{U^{k}} \sigma^{\mu\nu} P_{R} U^{n}] + \text{h.c.} \right] \\ &+ \left[V_{1SL}^{*ki} y_{1SL}^{nj} [\overline{E^{i}} \sigma_{\mu\nu} P_{R} E^{j}] [\overline{U^{k}} \sigma^{\mu\nu} P_{R} U^{n}] + \text{h.c.} \right] \\ &+ \left[V_{1SL}^{*ki} y_{1SL}^{nj} [\overline{E^{i}} \sigma_{\mu\nu} P_{R} E^{j}] [\overline{U^{k}} \sigma^{\mu\nu} P_{R} U^{n}] + \text{h.c.} \right] \\ &+ \left[V_{1SL}^{*ki} Y_{1SL}^{nj} [\overline{E^{i}} \sigma_{\mu\nu} P_{R} E^{j}] [\overline{U^{k}} \sigma^{\mu\nu} P_{R} U^{n}] + \text{h.c.} \right] \\ &+ \left[V_{1SL}^{*ki} Y_{1SL}^{*ki} Y_{1SL}^{nj} [\overline{U^{k}} \sigma^{\mu\nu} P_{R} E^{j}] [\overline{U^{k}} \sigma^{\mu\nu} P_{R} V_{1SL}^{*ki} P_{R} V_{1SL}^{*ki} Y_{1SL}^{*ki} Y_$$

2022.12.09

Constraints from $B_d^0 - \bar{B}_d^0$ **mixing**

$$|z_{1(3)\omega}^{11} z_{1(3)\omega}^{33}| < 4.6(2.3) \times 10^{-5} \times \left(\frac{M_{\omega 1(3)}}{\text{TeV}}\right)^2$$

$$\Delta a_{\mu}(S_{1}) \simeq \frac{3m_{\mu}^{2}}{8\pi^{2}M_{S_{1}}^{2}} \frac{m_{t}}{m_{\mu}} \operatorname{Re}[y_{1SR}^{32}y_{1SL}^{\prime*32}] \left[\frac{1}{3}f_{1}\left(\frac{m_{t}^{2}}{m_{S_{1}}^{2}}\right) + \frac{2}{3}f_{2}\left(\frac{m_{t}^{2}}{m_{S_{1}}^{2}}\right)\right]$$

$$\underbrace{S_{1}^{+1/3}}_{\ell} \underbrace{S_{1}^{+1/3}}_{\ell} \underbrace{V}_{\ell} \underbrace{S_{1}^{+1/3}}_{\ell} \underbrace{S_{1}^{+1/3}}_$$

Constraints from $(g-2)_{\ell}$

Parameter regions

$$\begin{split} & \mathrm{case}\;1:\;|y_{1SL}^{\prime 11}|<0.12\;,\;|y_{1SL}^{\prime 31,32}|<0.3\;,\;|y_{1SL}^{\prime 33}|<0.4\;,\;|y_{1SL}^{\prime 23}|<0.005\;,\\ & |y_{1SR}^{11}|<1.2\;,\;\mathrm{Re}[y_{1SR}^{32}y_{1SL}^{\prime *32}]\sim0.0848\;,\;|z_{1\omega}^{11}|<1.5\;,\;|z_{1\omega}^{33}|<0.001\;,\\ & \mathrm{case}\;2:\;|y_{3S}^{\prime 11}|<0.12\;,\;|y_{3S}^{\prime 31}|<0.07\;,\;|y_{3S}^{\prime 32}|<0.008\;,\;|y_{3S}^{\prime 33}|<0.4\;,\\ & |y_{3S}^{\prime 23}|<0.005\;,\;|z_{1\omega}^{11}|<1.5\;,\;|z_{1\omega}^{33}|<0.002\;,\\ & \mathrm{case}\;3:\;|y_{2S}^{11}|<1.5\;,\;|y_{2S}^{31}|<0.01\;,\;|y_{2S}^{32}|<0.01\;,\;|y_{2S}^{33}|<0.3\;,\\ & |y_{2S}^{\prime 23}|<0.3\;,\;|z_{3\omega}^{11}|<0.01\;,\;|z_{3\omega}^{33}|<0.15\;, \end{split}$$

2022.12.09

第19届重味物理和CP破坏研讨会

PART

PART II

The Effective Field Theory Approach

Focus on the standard neutrino exchange and short-range contribution

$$\begin{split} \mathcal{L}_{SR} &= \frac{G_F^2 V_{ud}^2}{2m_p} \sum_{X,Y,Z} \left(\epsilon_1^{\chi} J_X J_Y j_Z + \epsilon_2^{\chi} J_X^{\mu\nu} J_{Y,\mu\nu} j_Z + \epsilon_3^{\chi} J_X^{\mu} J_{Y,\mu} j_Z \right. \\ &\quad + \epsilon_4^{\chi} J_X^{\mu} J_{Y,\mu\nu} j^{\nu} + \epsilon_5^{\chi} J_X^{\mu} J_Y j_\mu \right) + \text{h.c.} \\ &= \frac{G_F^2 V_{ud}^2}{2m_p} \sum_{\chi,i} \epsilon_i^{\chi} \mathcal{O}_{i,\chi}^{0\nu\beta\beta} + \text{h.c.} & \text{H. Pas, M. Hirsch, et al.} \\ &\quad \text{Hep-ph/0008182} \end{split}$$

 $J_{R/L} = \overline{u}(1 \pm \gamma_5)d\,,$ $J^{\mu}_{R,L} = \overline{u}\gamma^{\mu}(1\pm\gamma_5)d\,,$ $J_{R/L}^{\mu\nu} = \overline{u}\sigma^{\mu\nu}(1\pm\gamma_5)d\,,$ $j_{R/L} = \overline{e}(1 \mp \gamma_5)e^c,$ $j^{\mu} = \overline{e} \gamma^{\mu} \gamma_5 e^c$.

2022.12.09

 χ,i

第19届重味物理和 CP 破坏研讨会

11

- **Inverse half-life** F. F. Deppisch, et al. (involving the short-range mechanism and standard neutrino exchange) 2009.10119 $\left[T_{1/2}^{0\nu\beta\beta}\right]^{-1} = G_{11+}^{(0)} \left|\sum_{i=1}^{3} \epsilon_{i}^{XYL} \mathcal{M}_{i}^{XY} + \epsilon_{\nu} \mathcal{M}_{\nu}\right|^{2} + G_{11+}^{(0)} \left|\sum_{i=1}^{3} \epsilon_{i}^{XYR} \mathcal{M}_{i}^{XY}\right|^{2} + G_{66}^{(0)} \left|\sum_{i=1}^{5} \epsilon_{i}^{XY} \mathcal{M}_{i}^{XY}\right|^{2}$ $+ G_{16}^{(0)} \times 2\operatorname{Re}\left[\left(\sum_{i=1}^{3} \epsilon_{i}^{XYL} \mathcal{M}_{i}^{XY} - \sum_{i=1}^{3} \epsilon_{i}^{XYR} \mathcal{M}_{i}^{XY} + \epsilon_{\nu} \mathcal{M}_{\nu}\right) \left(\sum_{i=1}^{5} \epsilon_{i}^{XY} \mathcal{M}_{i}^{XY}\right)^{*}\right]$ $+G_{11-}^{(0)} \times 2\operatorname{Re}\left[\left(\sum_{i=1}^{3} \epsilon_{i}^{XYL} \mathcal{M}_{i}^{XY} + \epsilon_{\nu} \mathcal{M}_{\nu}\right) \left(\sum_{i=1}^{3} \epsilon_{i}^{XYR} \mathcal{M}_{i}^{XY}\right)^{*}\right], \quad \text{nuclear matrix elements} \\ \text{phase space factors}$

12

PART II

Feynman diagrams

2022.12.09

第 19 届重味物理和 CP 破坏研讨会

Operators

matrix

1511

• Coefficients

$$\begin{aligned} & \text{case } 1: \quad (\overline{u_L e_L})(\overline{u_L e_L})(d_R d_R) \to \frac{1}{48} \mathcal{O}_1^{RRL} - \frac{1}{192} \mathcal{O}_2^{RRL}, \\ & (\overline{u_L e_L})(\overline{u_R e_R})(d_R d_R) \to \frac{1}{96i} \mathcal{O}_4^{RR} - \frac{1}{48} \mathcal{O}_5^{RR}, \\ & (\overline{u_R e_R})(\overline{u_R e_R})(d_R d_R) \to -\frac{1}{48} \mathcal{O}_3^{RRR}, \\ & (\overline{u_R e_R})(\overline{u_R e_R})(d_R d_R) \to -\frac{1}{48} \mathcal{O}_3^{RRR}, \\ & \text{case } 2: \quad (\overline{u_L e_L})(\overline{u_L e_L})(d_R d_R) \to \frac{1}{48} \mathcal{O}_1^{RRL} - \frac{1}{192} \mathcal{O}_2^{RRL}, \\ & \text{case } 3: \quad (\overline{u_L u_L})(d_R \overline{e_L})(d_R \overline{e_L}) \to \frac{1}{48} \mathcal{O}_1^{RRL} - \frac{1}{192} \mathcal{O}_2^{RRL}. \end{aligned} \right. \\ \end{aligned} \right. \\ \end{aligned} \right. \\ \begin{aligned} \text{case } 1: \quad \epsilon_1^{RRL} = +\frac{1}{48} \frac{2m_p}{G_F^2 V_{ud}^2} \frac{4(y_{1SL}^{*1L})^2 z_{1\omega}^{11} \mu_1}{M_{S_1}^4 M_{\omega_1}^2}, \quad \epsilon_2^{RR} = -\frac{1}{4} \epsilon_1^{RRL}, \\ & \epsilon_3^{RRR} = -\frac{1}{48} \frac{2m_p}{G_F^2 V_{ud}^2} \frac{4(y_{1SL}^{*1R})'^{SL} z_{1\omega}^{11} \mu_1}{M_{S_1}^4 M_{\omega_1}^2}, \quad \epsilon_5^{RR} = -2i\epsilon_4^{RR}, \\ & \epsilon_4^{RR} = +\frac{1}{96i} \frac{2m_p}{G_F^2 V_{ud}^2} \frac{4y_{1SL}^{*1SL} y_{1SL}^{*1SL} z_{1\omega}^{11} \mu_1}{M_{S_1}^4 M_{\omega_1}^2}, \quad \epsilon_5^{RR} = -2i\epsilon_4^{RR}, \\ & \text{case } 2: \quad \epsilon_1^{RRL} = +\frac{1}{48} \frac{2m_p}{G_F^2 V_{ud}^2} \frac{4(y_{3S}^{*1SL})'^{SL} z_{1\omega}^{11} \mu_2}{M_{S_3}^4 M_{\omega_1}^2}, \quad \epsilon_5^{RRL} = -\frac{1}{4} \epsilon_1^{RRL}, \\ & \text{case } 3: \quad \epsilon_1^{RRL} = -\frac{1}{48} \frac{2m_p}{G_F^2 V_{ud}^2} \frac{4(y_{3S}^{*1SL})^2 (v_{2S}^{*1SL})'^{SL} z_{1\omega}^{11} \mu_2}{M_{S_3}^4 M_{\omega_1}^2}, \quad \epsilon_2^{RRL} = -\frac{1}{4} \epsilon_1^{RRL}, \\ & \text{case } 3: \quad \epsilon_1^{RRL} = -\frac{1}{48} \frac{2m_p}{G_F^2 V_{ud}^2} \frac{4(y_{3S}^{*1SL})^2 (v_{2S}^{*1SL})'^{SL} z_{1\omega}^{11} \mu_2}{M_{S_3}^4 M_{\omega_1}^2}, \quad \epsilon_2^{RRL} = -\frac{1}{4} \epsilon_1^{RRL}. \end{aligned}$$

Numerical Results

$$\hat{U}_{(12)}^{XX} = \begin{pmatrix} 2.39 & 0.02 \\ -3.83 & 0.35 \end{pmatrix}, \qquad \qquad \mathcal{M}_{1}^{XX} \to \beta_{1}^{XX} = 2.39\mathcal{M}_{1}^{XX} - 3.83\mathcal{M}_{2}^{XX}, \\ \mathcal{M}_{2}^{XX} \to \beta_{2}^{XX} = 0.02\mathcal{M}_{1}^{XX} + 0.35\mathcal{M}_{2}^{XX}, \\ \mathcal{M}_{2}^{XX} \to \beta_{2}^{XX} = 0.02\mathcal{M}_{1}^{XX} + 0.35\mathcal{M}_{2}^{XX}, \\ \mathcal{M}_{3}^{XX} \to \beta_{3}^{XX} = 0.70\mathcal{M}_{3}^{XX}, \\ \mathcal{M}_{4}^{XX} \to \beta_{4}^{XX} = 0.35\mathcal{M}_{4}^{XX} - 0.06i\mathcal{M}_{5}^{XX}, \\ \mathcal{M}_{5}^{XX} \to \beta_{5}^{XX} = -0.96i\mathcal{M}_{4}^{XX} + 2.39\mathcal{M}_{5}^{XX}.$$

第19届重味物理和 CP 破坏研讨会

$$(y_S^{*11})^2 z_{\omega}^{11} \simeq 300 \times \frac{\mathcal{M}_{\nu}}{\beta_1 - \beta_2/4} \frac{\langle m_{ee} \rangle}{\mathrm{eV}} \times \left(\frac{1.5 \mathrm{~TeV}}{\mu}\right) \left(\frac{M_S}{1.5 \mathrm{~TeV}}\right)^4 \left(\frac{M_{\omega}}{8 \mathrm{~TeV}}\right)$$

2022.12.09

第19届重味物理和 CP 破坏研讨会

PART II

 $\mathbf{2}$

- Brief Introduction
- Neutrinoless Double Beta Decay ($|\Delta L| = 2$)
- Neutron-Antineutron Oscillation ($|\Delta B| = 2$)
- Summary

Systematic decomposition of $d = 9 n - \bar{n}$ **oscillation operators**

Operators & Transition rate

• The basis for the operators

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^1 = [\overline{u_i^c}P_{\chi_1}u_j][\overline{d_k^c}P_{\chi_2}d_l][\overline{d_m^c}P_{\chi_3}d_n]T^{SSS},$$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^2 = [\overline{u_i^c}P_{\chi_1}d_j][\overline{u_k^c}P_{\chi_2}d_l][\overline{d_m^c}P_{\chi_3}d_n]T^{SSS},$$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^3 = [\overline{u_i^c}P_{\chi_1}d_j][\overline{u_k^c}P_{\chi_2}d_l][\overline{d_m^c}P_{\chi_3}d_n]T^{AAS}.$$

and the independent effective operators are defined as

$$\begin{split} \mathcal{O}_{1} &= -4\mathcal{O}_{RRR}^{3}, \quad \mathcal{O}_{2} = -4\mathcal{O}_{LRR}^{3}, \quad \mathcal{O}_{3} = -4\mathcal{O}_{LLR}^{3}, \\ \mathcal{O}_{4} &= -\frac{4}{5}\mathcal{O}_{RRR}^{1} - \frac{16}{5}\mathcal{O}_{RRR}^{2}, \quad \mathcal{O}_{5} = \mathcal{O}_{RLL}^{1}, \\ \mathcal{O}_{6} &= -4\mathcal{O}_{RLL}^{2}, \quad \mathcal{O}_{7} = -\frac{4}{3}\mathcal{O}_{LLR}^{1} - \frac{8}{3}\mathcal{O}_{LLR}^{2}. \end{split}$$

PART III

M. I. Buchoff and M. Wagman 1506.00647

Wilson coefficients at

• Effective Lagrangian and the transition rate

$$\mathcal{L}_{\text{eff}} = \sum_{i=1,2,3,5} \left(\mathcal{C}_i(\mu) \mathcal{O}_i(\mu) + \mathcal{C}_i^P(\mu) \mathcal{O}_i^P(\mu) \right), \qquad \text{the NP scale}$$
$$\tau_{n-\bar{n}}^{-1} = \left\langle \bar{n} | \mathcal{L}_{\text{eff}} | n \right\rangle = \left| \sum_{i=1,2,3,5} \left(\mathcal{C}_i(\mu) \mathcal{M}_i(\mu) + \mathcal{C}_i^P(\mu) \mathcal{M}_i^P(\mu) \right) \right|. \qquad \text{Transition matrix}$$
elements at the NP scale

2022.12.09

第19届重味物理和 CP 破坏研讨会

16

Generation of the topologies and diagrams

Tree level

2022.12.09

第19届重味物理和 CP 破坏研讨会

Classification of the one-loop diagrams

class 1 (2+2+1+1): T-L-1, T-L-2, T-L-3, T-L-4;

class 2 (2+1+1+1+1): T-L-5, T-L-6, T-L-7;

► class 3 (1+1+1+1+1): T-L-8.

Assignment of chiral quarks

- Three possible cases (total hypercharge of the external legs is zero)
 - (i) $4d_R$, $2u_R$, $d_Rd_Ru_R \leftrightarrow \overline{d_R} \overline{d_R} \overline{u_R}$, (ii) $2d_R$, $2d_L$, $2u_L$, $d_Rd_Lu_L \leftrightarrow \overline{d_R} \overline{d_L} \overline{u_L}$, $d_Ld_Lu_L \leftrightarrow \overline{d_R} \overline{d_R} \overline{u_L}$, (iii) $3d_R$, $1d_L$, $1u_R$, $1u_L$, $d_Ld_Ru_L \leftrightarrow \overline{d_R} \overline{d_R} \overline{u_R}$, $d_Rd_Lu_R \leftrightarrow \overline{d_R} \overline{d_R} \overline{u_L}$.
- Find out the combination of the external legs
 - $T-T-1 : (d_R d_R)(d_R u_R)(d_L u_L),$
 - T-T-2, class 1 : $(d_R d_R)(d_R u_R)(d_L)(u_L)$, $(d_R d_R)(d_R)(u_R)(d_L u_L)$,
 - $(d_R)(d_R)(d_R u_R)(d_L u_L)\,,$

For case (iii)

 ${
m class} \,\, 2 \,\, : \,\, (d_R)(d_R)(d_R)(u_R)(d_L u_L) \,, \quad (d_R)(d_R)(d_R u_R)(d_L)(u_L) \,,$

 $(d_R d_R)(d_R)(u_R)(d_L)(u_L)\,,$

class 3 : $(d_R)(d_R)(d_R)(u_R)(d_L)(u_L)$.

2022.12.09

第19届重味物理和 CP 破坏研讨会

18

label the quark current

as $(\overline{q^c}q^{(\prime)}) = (qq^{(\prime)})$

Decomposition of the operators

• $SU(3)_C$ $3 \otimes 3 = \overline{3} \oplus 6, \ 3 \otimes \overline{3} = 1 \oplus 8, \ 3 \otimes 6 \supset 8, \ 3 \otimes \overline{6} \supset \overline{3}, \ 3 \otimes 8 \supset 3 \oplus \overline{6}, \ 6 \otimes 6 \supset \overline{6}, \ 6 \otimes \overline{6} \supset 1 \oplus 8, \ 6 \otimes 8 \supset \overline{3} \oplus 6, \ 8 \otimes 8 \supset 1 \oplus 8 \oplus 8.$

- $SU(2)_L$ $2 \otimes 2 = 1 \oplus 3, 2 \otimes 3 \supset 2, 3 \otimes 3 \supset 1 \oplus 3.$
- $U(1)_Y$ The hypercharge Y is conserved at every vertex.

$$Y(d_R) - Y(\psi_1) - Y(I_1) = 0$$

$$Y(\psi_1) + Y(d_R) - Y(I_2) = 0$$

$$Y(I_1) + Y(d_R) - Y(\psi_2) = 0$$

$$Y(\psi_2) + Y(d_R) - Y(I_3) = 0$$

$$Y(I_2) + Y(u_R) - Y(\psi_3) = 0$$

$$Y(\psi_3) + Y(u_R) + Y(I_3) = 0$$

Lists of the decomposition

• TT 1	Operator	S_1	S_2	S_3
• 1-1-1	$(d_R d_R)(d_R d_R)(u_R u_R)$	$(6, 1, -\frac{2}{3})$	$(6,1,-rac{2}{3})$	$(6, 1, \frac{4}{3})$
	(d p u p)(d p u p)(d p d p)	$(\overline{3},1,\frac{1}{3})$	$(\overline{3},1,rac{1}{3})$	$(6,1,-rac{2}{3})$
	(aRaR)(aRaR)(aRaR)	$(6, 1, \frac{1}{3})$	$(6,1,rac{1}{3})$	$(6,1,-\tfrac{2}{3})$
	$(d_R d_R)(d_L d_L)(u_L u_L)$	$(6, 1, -\frac{2}{3})$	$(6,3,rac{1}{3})$	$(6, 3, \frac{1}{3})$
Y_{I_3}		$(\overline{3},1,\frac{1}{3})$	$(\overline{3},1,rac{1}{3})$	$(6,1,-rac{2}{3})$
I_1 I_2	$(d_{T}u_{T})(d_{T}u_{T})(d_{D}d_{D})$	$(6, 1, \frac{1}{3})$	$(6,1,rac{1}{3})$	$(6,1,-rac{2}{3})$
T-T-1	$(a_L a_L)(a_L a_L)(a_R a_R)$	$(\overline{3},3,rac{1}{3})$	$(\overline{3},3,rac{1}{3})$	$(6,1,-\tfrac{2}{3})$
		$(6, 3, \frac{1}{3})$	$(6,3,rac{1}{3})$	$(6,1,-\tfrac{2}{3})$
	$(d_T u_T)(d_D u_D)(d_D d_D)$	$(\overline{3},1,rac{1}{3})$	$(\overline{3},1,rac{1}{3})$	$(6,1,-rac{2}{3})$
	("L"L)("K"K)("K"K)	$(6,1,\frac{1}{3})$	$(6,1,rac{1}{3})$	$(6,1,-rac{2}{3})$

PART III

Neutron-Antineutron oscillation

	S	U(3	$B)_C$			Sl	J(3)	C		$SU(2)_L$			Particles							$U(1)_{\mathbf{Y}}$														
			1	\square		7				$ q_1 $	$ q_2 $	q_3	q_4	q_5	q_6	I_1	I_2	$I_3 I_1$	$_{4} \psi$		Farticles													
I_1	I_2	$2 I_3$	$ I_4 $	$ \psi $	I_1	12	13	14	ψ	1	1	1	1	1	1	1	1	1 1	. 1		$ _{q_1}$	q_2	q_3	q_4	q_5	q_6	I_1	I_2	I_3	I_4		ψ		
3	$\overline{3}$	3	8	$\overline{3}$		6	3	8	$\overline{3}$							1	1	2 2	2 2	ll –		12			10	10	-					,		
		-		C			3	8	6		<u> </u>		<u> </u>			1	1	3 3	3 3	H	d_R	d_R	d_R	d_R	u_R	u_R	$-\frac{2}{3}$	$\left -\frac{2}{3}\right $	$ \alpha $	$-\alpha$ –	$\frac{4}{3}$	$\alpha + \frac{2}{3}$		
			°	0			3	3	1	$\ 1$	1	1	1	2	2	1	1	$\frac{1}{2}$. 2	H	H .						2	. 4			2	1		
		3	3	1				-								1	1	$\frac{2}{2}$	$\frac{2}{1}$	H	d_R	d_R	u_R	u_R	d_R	d_R	$-\frac{2}{3}$	$+\frac{4}{3}$	α	$-\alpha +$	$\frac{2}{3}$	$\alpha - \frac{1}{3}$		
		$\overline{3}$	3	8			3	3	8							1	1	2 2	2 3	H		d p	d	,	d p	21 5								
• I-L-I							$\overline{3}$	6	8	1	1	2	2	1	1	1	1	$\frac{3}{1}$	$\begin{array}{c c} 2 \\ 1 \end{array}$	H		u _R			^u R		$-\frac{2}{3}$	$+\frac{1}{3}$	$\left \alpha \right - \alpha - \frac{1}{3}$	$\frac{1}{3}$	$\alpha - \frac{1}{3}$			
		3	6	8			6	$\overline{3}$	8	1				1	1	1	1	$\frac{1}{2}$	$\frac{1}{2}$	H	d_R	d_R	d_L	u_L	d_R	u_R	2					0		
		6	$\overline{3}$	8			6	6	•							1	$\frac{1}{1}$	$\frac{2}{3}$ 3	$\frac{2}{3}$	H														
q_1		6	6				-	0	-							1	3	$\frac{2}{2}$ 2	2 2	Ħ	d_R	d_R	d_R	u_R	u_R	d_R	2				1	2		
$\neg I_3 I_1 \checkmark \square$				0			6	8	3							1	3	3 3	3 3	ti i	d	d	d				$-\overline{3}$	$\left \pm \overline{3} \right $	$ ^{\alpha} $	$-\alpha - \frac{1}{3}$	3	$\alpha + \frac{1}{3}$		
		$\overline{6}$	8	$\overline{3}$			8	3	3	1	1	2	2	2	2	1	1	1 1	. 2	Ť	$ ^{u_R}$	u_R	a_L	$ u_L $	u_R	a_R								
, ∀ , , , , , , , , , , , , , , , , , , ,		8	3	3			8	3	$\overline{6}$							1	1	2 2	2 1		$\ _{d_R}$	u_{R}	d_{R}	u_{R}	d_{R}	d_{R}								
																1	1	2 2	2 3			10			10									
$-I_4$ I_2 a_4		8	3	6		_	8	0	3							1	1	3 3	3 2	ļ	d_R	u_R	d_L	u_L	d_R	d_R	. 1	. 1			2	1		
94		8	$\overline{6}$	3	6	3	3	8	$\overline{3}$							1	3	1 3	8 2	H	.	,			,	,	$+\frac{1}{3}$	$ +\frac{1}{3} $	$ \alpha $	$-\alpha +$	$\frac{2}{3}$	$\alpha - \frac{1}{3}$		
6	6	2	•	5			3	8	6							1	3	3 1	. 2	H	d_L	d_L	u_L	u_L	d_R	d_R								
T-L-1	0		0	3			2	7	1							1	3	$\frac{2}{2}$	$\frac{2}{1}$	H	d_{T}	111	d_{T}	и.т	d_{P}	d_{P}								
		3	8	6			-	-	1							1	3	$\frac{2}{2}$	$\frac{1}{2}$	H		~			~_{L}	~n								
		$\overline{3}$	6	8			3	3	8	2	2	2	2	1	1	1	3 1	$\frac{3}{1}$	$\begin{array}{c c} 2 \\ 1 \end{array}$	H	d_R	d_R	d_R	u_R	d_L	u_L								
			-				3	6	8					1	1	1	1	$\frac{1}{2}$	$\frac{1}{2}$	H					+ + -									
		6	3	8			6	$\overline{3}$	8							1	1	$\frac{2}{3}$ 3	$\frac{1}{3}$ 3	H	d_R	d_R	d_R	u_R	u_L	d_L								
		6	6	8			6	C	0							1	3	$\frac{1}{2}$ 2	$\frac{1}{2}$	Ħ	d	dr	d.	d.										
		Ē		2			0	0	8							1	3	3 3	3 3	ť	u_R	u_R			u_L	u_L	$-\frac{2}{3}$	$+\frac{1}{3}$	$ \alpha $	$-\alpha$ –	$\frac{1}{3}$	$\alpha + \frac{1}{6}$		
			0	3			$\overline{6}$	8	3							3	3	1 1	. 1	†	$\ d_R\ $	d_R	u_L	u_L	d_L	d_L	5				5	0		
		8	3	3			8	3	3							3	3	2 2	2 2															
		8	3	$\overline{6}$			8	3	<u></u> <u> </u>							3	3	3 3	3		d_R	d_R	u_L	d_L	u_L	d_L								
			-	\exists				-								3	3	1 3	3 3	ļ	4	,		,	4									
		8	6	3			8	6	3							3	3	3 1	. 3		$ ^{d_R}$	a_R	u_L	a_L	a_L	$ u_L $								

2022.12.09

 q_5

 q_6

PART III

T-L-4

T-L-4

		T-L-2	T-L-3			T-L-4		
$SU(3)_C$	$SU(3)_C$	$SU(2)_L$	Particles $U(1)_Y$	$SU(3)_C$	$SU(3)_C$	$SU(2)_L$	Particles	$U(1)_Y$
$I_1 \ I_2 \ \psi_1 \ \psi_2 \ \psi_3 \ I_3$	$I_1 \ I_2 \ \psi_1 \ \psi_2 \ \psi_3 \ I_3$	$q_1 q_2 q_3 q_4 q_5 q_6 I_1 I_2 I_3 I_4 I_5 \psi$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$I_1 I_2 I_3 I_4 \psi_1 \psi_2$	I1 I2 I2 I4 1/1 1/2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$I_1 I_2 I_3 I_4 \qquad \psi_1 \qquad \psi_2$
$I_1 I_2 I_3 I_4 I_5 \psi$	I_1 I_2 I_3 I_4 I_5 ψ	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	333333			$d_R d_R d_R d_R d_R u_R u_R$	$\left -\frac{2}{3}\right -\frac{2}{3}$ α $\left -\alpha-\frac{2}{3}\right $ $\alpha+\frac{2}{3}$ $\left -\alpha\right $
$\overline{3}$ $\overline{3}$ 3 3 1 $\overline{3}$	$\overline{3}$ 6 3 3 8 $\overline{3}$		$d_R d_R d_R d_R d_R u_R u_R -\frac{2}{3} -\frac{2}{3} \alpha -\alpha -\frac{2}{3} \alpha -\frac{2}{3} -\alpha$		3 6 3 3 3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d_R d_R u_R u_R u_R d_R d_R$	$-\frac{2}{3}+\frac{4}{3}\alpha -\alpha -\frac{2}{3}\alpha -\frac{1}{3}-\alpha -1$
3 3 8 3	3 3 8 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{d_R}{d_R} \frac{d_R}{u_R} \frac{u_R}{u_R} \frac{d_R}{d_R} \frac{d_R}{-\frac{2}{3}} + \frac{4}{3} \frac{\alpha}{\alpha} - \alpha - \frac{2}{3} \frac{\alpha}{\alpha} + \frac{4}{3} - \alpha - 1$	3 3 3 5	3 3 6 6		$u_R u_R d_R d_R d_R d_R d_R$	$+\frac{4}{3}$ $-\frac{2}{3}$ α $-\alpha$ $+\frac{4}{3}$ α $-\frac{1}{3}$ $-\alpha$ $+1$
3 3 8 6	$3\overline{6}8\overline{3}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 3 6 3	$3\overline{6}\overline{3}\overline{3}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d_R d_R d_R u_R d_R u_R	
3 $\overline{6}$ 1 $\overline{3}$	3 8 3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d_R d_R d_R u_R d_R u_R 2 1 2 1	3 6 3 3	3883	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left -\frac{2}{3}\right +\frac{1}{3}\left \alpha\right -\alpha-\frac{2}{3}\left \alpha-\frac{1}{3}\right -\alpha$
3 6 8 3	3836	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1}{d_R} \frac{d_R}{d_L} \frac{d_L}{u_L} \frac{d_R}{d_R} \frac{u_R}{u_R} = \frac{2}{3} + \frac{1}{3} \alpha - \alpha - \frac{2}{3} \alpha + \frac{1}{3} - \alpha - 1$	$3 \overline{6} 6 \overline{3}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d_{P} d_{P} d_{P} u_{P} u_{P} u_{P} d_{P}$	
3 8 3 3		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{d_B}{d_B} \frac{d_B}{d_B} \frac{u_B}{u_B} \frac{u_B}{u_B} \frac{d_B}{d_B} \frac{u_B}{u_B} \frac{u_B}{u_B} \frac{d_B}{u_B} \frac{u_B}{u_B} u_$	3 8 8 3	3 8 8 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{d_{R}}{d_{R}} \frac{d_{R}}{d_{R}} \frac{d_{R}}{d_{R}} \frac{d_{R}}{d_{R}} \frac{d_{R}}{d_{R}} \frac{d_{R}}{d_{R}}$	$\left -\frac{2}{3}\right +\frac{1}{3}\left \alpha\right -\alpha-\frac{2}{3}\left \alpha+\frac{2}{3}\right -\alpha-1$
3 8 3 6			$\frac{1}{d_B} \frac{1}{d_B} \frac{1}{d_L} \frac{1}{u_L} \frac{1}{u_B} \frac{1}{d_B} \frac{1}{d_B} -\frac{2}{3} +\frac{1}{3} \alpha -\alpha -\frac{2}{3} \alpha +\frac{1}{3} -\alpha$	3886	6 8 8 3		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3 8 6 3		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{d_{P}}{d_{P}} \frac{d_{P}}{d_{P}} \frac{d_{P}}{d_{$		6 8 8 $\overline{6}$		$a_R \ u_R \ a_R \ a_R \ a_R \ u_R$	$\left +\frac{1}{3} \right -\frac{2}{3} \left \alpha \right -\alpha +\frac{1}{3} \left \alpha -\frac{1}{3} \right -\alpha +1$
6 8 3 3	6 3 8 3		$\frac{d_R}{d_L} \frac{d_R}{u_L} \frac{d_R}{d_R} \frac{d_R}{d_R} \frac{d_R}{u_R} + \frac{1}{3} \left[-\frac{2}{3} \right] \alpha \left[-\alpha + \frac{1}{3} \right] \alpha - \frac{2}{3} - \alpha$	0 8 8 3	6333	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$6 8 3 \overline{6}$	6 3 8 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{d_{D}}{d_{D}} \frac{d_{D}}{d_{D}} \frac{d_{D}}{d_{$	6 8 8 $\overline{6}$			$d_R \ u_R \ d_R \ d_R \ u_R \ d_R$	$+\frac{1}{3} -\frac{2}{3} \alpha -\alpha +\frac{1}{3} \alpha +\frac{2}{3} -\alpha$
$\overline{6}$ 3 8 $\overline{3}$	8 3 3 1		$\frac{d_R}{d_L} \frac{d_R}{u_L} \frac{d_R}{d_L} \frac{d_R}{u_L} \frac{d_R}{d_L} + \frac{1}{3} - \frac{2}{3} \alpha - \alpha + \frac{1}{3} \alpha - \frac{2}{3} - \alpha + 1$	$\overline{6}$ 3 $\overline{3}$ $\overline{3}$	8 3 3 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d_L \ u_L \ d_R \ d_R \ u_R \ d_R$	
$\overline{6}$ 3 8 6	8 3 3 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{d_L}{d_L} \frac{d_L}{d_L} \frac{d_R}{d_R} \frac{d_R}{d_R} \frac{d_R}{d_R} \frac{d_R}{d_R}$	$\overline{6}$ 3 $\overline{3}$ 6	8 3 6 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d_R \ u_R \ d_R \ u_R \ d_R \ d_R$	
	8 3 6 8		$d_R u_R u_R u_R u_R u_R u_R u_R$	8 3 3 8	8 6 3 8		$d_R \ u_R \ d_L \ u_L \ d_R \ d_R$	
8 3 3 8	8 6 3 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$u_R u_R u_L u_L u_L u_R u_R$	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$u_L \ u_L \ d_L \ d_L \ d_R \ d_R$	$+\frac{1}{2}$ $+\frac{1}{2}$ α $-\alpha$ $+\frac{1}{2}$ α $-\frac{1}{2}$ $-\alpha$
8 3 6 8	8 6 6 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{u_L}{d} \frac{u_L}{d} \frac{u_L}{d} \frac{u_L}{d} \frac{u_R}{d} \frac{u_R}{d} + \frac{1}{3} + \frac{1}{3} \alpha - \alpha + \frac{1}{3} \alpha + \frac{1}{3} - \alpha$		8 0 0 8	$1 \ 3 \ 2 \ 2 \ 3 \ 1$	$egin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a_L \ a_L \ u_L \ u_L \ a_R \ a_R$	8 6 3 8	6 3 3 3 3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d_L \ u_L \ d_R \ u_R \ d_R \ d_R$	
	3 3 8 $\overline{3}$			8 6 6 8	3 3 $\overline{3}$ 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c c c c c c c c c c c c c c c c c c c $	
	3 3 8 6			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 3 6 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d_R d_R d_R d_R u_R d_L u_L$	
	3 8 3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 3 6 6		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_R d_R d_R d_R u_R u_L d_L$	
	3 8 3 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3883	3 8 8 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d_B d_B d_L d_L u_L u_L$	
3 8 3 3	$\overline{3}$ 8 $\overline{6}$ 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{d_R \ d_R \ d_L \ d_L \ u_L \ u_L}{\alpha - \alpha - \frac{2}{3}} + \frac{1}{3} \ \alpha \ -\alpha - \frac{2}{3} \ \alpha + \frac{1}{3} - \alpha - \frac{1}{2}$		$\overline{3}$ 8 8 $\overline{6}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left -\frac{2}{3}\right +\frac{1}{3}\alpha\left -\alpha-\frac{2}{3}\right \alpha+\frac{1}{6}\left -\alpha-\frac{1}{2}\right $
	6 8 3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3886	6 8 8 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{d_R}{d_R} \frac{d_R}{d_L} \frac{d_L}{u_L} \frac{d_L}{d_L} \frac{d_L}{u_L} \frac{d_L}{d_L}$	
6 8 6 3		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 8 8 3	6 8 8 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{a_R}{d_R} \frac{a_R}{d_L} \frac{a_L}{d_L} \frac{a_L}{d_L} \frac{a_L}{d_L}$	
			$d_R \ d_R \ u_L \ d_L \ u_L$	$6 8 8 \overline{6}$			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6 6 8 3		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$d_L \ d_L \ d_R \ d_R \ u_L \ u_L$	$\overline{6}$ $\overline{6}$ $\overline{3}$ $\overline{3}$	$\overline{6}$ $\overline{6}$ $\overline{3}$ $\overline{3}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a_L a_L a_R a_R a_R u_L u_L$	
8 3 3 1			$u_L \ u_L \ d_R \ d_R \ d_L \ d_L$	8 3 3 8	8 3 3 8	1 1 2 2 3 3	$u_L \ u_L \ d_R \ d_R \ d_L \ d_L$	
8 3 3 8	8 3 3 8		$ \frac{d_R}{d_R} \frac{u_R}{d_R} \frac{d_R}{d_L} \frac{d_L}{u_L} + \frac{1}{3} - \frac{2}{3} \frac{1}{\alpha} - \alpha + \frac{1}{3} \frac{1}{\alpha - \frac{2}{3}} - \frac{1}{\alpha - \frac{2}{3}} \frac{1}{\alpha - \frac{2}{3}} - \frac{1}{\alpha - \frac{2}{3}} \frac{1}{\alpha - \frac{2}{3}} - \frac{1}{\alpha - \frac{2}{3}} \frac{1}{\alpha - \frac{2}{3}} \frac{1}{\alpha - \frac{2}{3}} - \frac{1}{\alpha - \frac{2}{3}} \frac{1}{\alpha - \frac{2}{3}} - \frac{1}{\alpha - \frac{2}{3}} \frac{1}{\alpha - $		8 3 6 8		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left +\frac{1}{3} \right -\frac{2}{3} \left \alpha \right -\alpha +\frac{1}{3} \left \alpha +\frac{1}{6} \right -\alpha +\frac{1}{2}$
8 3 6 8	8 3 6 8		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8 3 0 8		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
8 6 3 8	8 6 3 8		$u_L d_L d_R d_R d_L u_L$	8 6 3 8	8 0 3 8		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
			$\ u_{\tau} _{d\tau} d_{\tau} _{d\tau} d_{\tau} _{u_{\tau}} d_{\tau} $		8 8 8 8		ar dr dr dr ar dr	

TABLE V. The possible numbers of the fields in Topology-L-2 and Topology-L-3.

TABLE VI. The possible quantum numbers of the fields in Topology-L-4.

22

|3|1|2|2

The completed lists can be found in our manuscript.

2022.12.09

第19届重味物理和 CP 破坏研讨会

PART III

An example toy model

(Introduce \mathbb{Z}_2 symmetry)

Particles

SM particles	Quantum Number	New Particles	Quantum Number
$\Phi = (\phi^+, \phi^0)^T$	(1, 2, 1/2, +1)	S_1	(3, 1, -1/3, -1)
$Q_L = (U_L, D_L)^T$	(3, 2, 1/6, +1)	$S_2 = (S_2^{+2/3}, S_2^{-1/3})^T$	(3, 2, 1/6, -1)
$L_L = (\nu_L, E_L)^T$	(1, 2, -1/2, +1)	$\eta = (\eta^+, \eta^0)^T$	(1,2,1/2,-1)
U_R	(3, 1, +2/3, +1)	N_i	(1,1,0,-1)
D_R	(3, 1, -1/3, +1)	$\psi = (\psi^{+2/3}, \psi^{-1/3})^T$	(3, 2, 1/6, -1)
E_R	(1, 1, -1, +1)		

Lagrangian

 $\begin{aligned} & -\mathcal{L}_Y \supset \ y_N^{ij} \overline{(L_L^i)^c} i\sigma_2 \eta N_j^c + y_{\psi}^i \overline{(L_L^{i\alpha})^c} i\sigma_2 \psi^{\alpha} S_1^{*\bar{\alpha}} + y_1^i \overline{\psi^{\alpha}} i\sigma_2 \eta^* U_R^{i\alpha} \\ & + y_2^{ij} \overline{(D_R^{i\alpha})^c} N_j S_1^{*\bar{\alpha}} + y_3^i \overline{(Q_L^{i\alpha})^c} i\sigma_2 \psi^{\beta} S_1^{\gamma} \epsilon^{\alpha\beta\gamma} + y_4^{ij} \overline{(Q_L^{i\alpha})^c} S_2^{*\bar{\alpha}} N_j^c \\ & + y_5^i \overline{(\psi^{\alpha})^c} i\sigma_2 S_2^{\beta} D_R^{i\gamma} \epsilon^{\alpha\beta\gamma} + y_6^i \overline{\psi^{\alpha}} \eta D_R^{i\alpha} + \text{h.c.} . \end{aligned}$

forbid Right-handed neutrino $N_{1,2}$ couples with leptons, N_3 couples **proton decay** with quarks, and $y_{\psi} = 0$.

2022.12.09

PART III

2022.12.09

第19届重味物理和 CP 破坏研讨会

Assume that $m_N = m_{\eta^+} = m_{\eta^0_R} \simeq m_{\eta^0_I} = 2 \text{ TeV}, \ m_{\psi} = m_{S_i},$ $a = 1, \ b = c = d = f, \ g^+ = g_R^0 = 1, \ g_I^0 \simeq 1.$ The loop integral $F_6(1, b, b, b, b, 1) = \frac{-b^3 - 9b^2 + 9b + 6(b+1)b\ln b + 1}{12(b-1)^5b}.$

The Super-K experiment excludes the parameter region above the lines (the region in gray).

 $\begin{aligned} |y_1^1 y_2^{13} y_3^1 y_4'^{13} y_5^1 y_6^1| &\equiv |y_1 y_2 y_3 y_4 y_5 y_6| \\ m &\equiv m_{\psi} = m_{S_i} \end{aligned}$

2022.12.09

第19届重味物理和 CP 破坏研讨会

- Brief Introduction
- Neutrinoless Double Beta Decay ($|\Delta L| = 2$)
- Neutron-Antineutron Oscillation ($|\Delta B| = 2$)
- Summary

SUMMARY

• The neutrinoless double beta decay in the colored Zee-Babu model

- Consider three cases of the colored Zee-Babu model
- Focus on the interplay of standard neutrino exchange and short-range contribution of neutrinoless double beta decay
- Find that neutrinoless double beta decay can be hidden under certain condition
- The condition can be examined comprehensively by future complementary searches with different isotopes.
- Systematic decomposition of $d = 9 n \bar{n}$ oscillation operators
 - Discuss the topologies' generation and the assignment of the chiral quarks.
 - Provide the completed lists of the decompositions
 - Show a toy example

2022.12.09

Thank you for your attention

BACKUP

第19届重味物理和 CP 破坏研讨会