

Recent CPV measurements at LHCb

第十九届重味物理和CP破坏研讨会 2022年12月9-11日

Outline

➢Introduction

➤CPV in charmless B decays

> Measurements of γ angle (backup) 张舒楠的报告

≻CPV in charm

CP violation

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud}V_{us}V_{ub} \\ V_{cd}V_{cs}V_{cb} \\ V_{td}V_{ts}V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

CKM mixing matrix

> Origin of CPV in SM: nonzero CKM weak phase ($\eta \neq 0$ in Wolfenstein parameterization)

 CPV provided by the SM is short by 10¹⁰ to explain the Baryon Asymmetry in the Universe

Unitarity triangles

Fest unitarity by measuring sides (rates, B⁰_q mixing) and angles (CP asymmetries)

Three types of CPV

P in interference between mixing and decay ("Mixing induced P")

Different weak phases in mixing and decay

CPV in charmless *B* **decays**

Charmless *B* **decays**

- > Mediated by $b \rightarrow u$ tree and $b \rightarrow d(s)$ penguin diagrams with comparable magnitude and large weak phases
- Expecting direct CPV

$B \rightarrow PV$ decays with Run 2 data

▶ Quasi-two-body $B \rightarrow PV$ decays: $B^{\pm} \rightarrow R(\rightarrow h_1^- h_2^+)h_3^{\pm}$

Phys. Rev. D94 (2016) 054028

> A new method: resonances with masses below or around 1 GeV/ c^2

$B \rightarrow PV$ decays with Run 2 data

Decay channel	This work	Previous measurements
$B^{\pm} \rightarrow (\rho(770)^0 \rightarrow \pi^+\pi^-)\pi^{\pm}$	$-0.004 \pm 0.017 \pm 0.009$	$+0.007 \pm 0.011 \pm 0.016 \text{ (LHCb [20, 21])}$
$B^{\pm} \rightarrow (\rho(770)^0 \rightarrow \pi^+\pi^-) K^{\pm}$	$+0.150 \pm 0.019 \pm 0.011$	$+0.44 \pm 0.10 \pm 0.04 \text{ (BaBar [28])} +0.30 \pm 0.11 \pm 0.02 \text{ (Belle [22])}$
$B^{\pm} \to (\overline{K})^* (892)^0 \to K^{\pm} \pi^{\mp}) \pi^{\pm}$	$-0.015 \pm 0.021 \pm 0.012$	$+0.032 \pm 0.052 \pm 0.011$ (BaBar [28]) $-0.149 \pm 0.064 \pm 0.020$ (Belle [22])
$B^{\pm} \rightarrow ({}^{'}\overline{K}{}^{'}*(892)^{0} \rightarrow K^{\pm}\pi^{\mp})K^{\pm}$	$+0.007 \pm 0.054 \pm 0.032$	$+0.123 \pm 0.087 \pm 0.045 \text{ (LHCb [19])}$
$B^{\pm} \rightarrow (\phi(1020) \rightarrow K^+K^-)K^{\pm}$	$+0.004 \pm 0.014 \pm 0.007$	$+0.128 \pm 0.044 \pm 0.013$ (BaBar [26])

arXiv:2206.02038

> A new method, without the need for amplitude analyses

- \succ For B^{\pm} → ρ (770) K^{\pm} : 6.8 σ differs from 0
- > For the other channels, $A_{CP} \approx 0$ (CPT symmetry)
- > More precise than the previous results

Three-body charmless *B* decay

> Localised A_{CP} in $B \rightarrow 3\pi$, $3K, KK\pi, K\pi\pi$

Prog. Part. Nucl. Phys. 114 (2020) 103808
> Originating from long-distance hadronic interactions

 $\Box f_0(500) - \rho(770)$ arXiv:2209.02348 Phys. Rev. D 105, 093007(2022)

 $\Box \pi \pi - KK$

Three-body charmless B decay with Run 2 data

> Significant A_{CP} : $B \rightarrow 3\pi$, 3K for the first time

arXiv:2206.07622

Confirmed high localised A_{CP}

Search for CPV using TPA

 \succ Triple products in Λ_h rest frame \hat{T} = motion reversal operator $C_{\widehat{T}} = \vec{p}_p \cdot (\vec{p}_{h^-} \times \vec{p}_{h^+}) \propto \sin\Phi$ $\overline{C}_{\widehat{T}} = \vec{p}_{\overline{p}} \cdot (\vec{p}_{h^+} \times \vec{p}_{h^-}) \propto \sin\overline{\Phi}$ $\succ \hat{T}$ – odd asymmetries: $A_{\widehat{T}} = \frac{N_{A_b^0}(C_{\widehat{T}} > 0) - N_{A_b^0}(C_{\widehat{T}} < 0)}{N_{A_b^0}(C_{\widehat{T}} > 0) + N_{A_b^0}(C_{\widehat{T}} < 0)},$ $\overline{A}_{\widehat{T}} = \frac{N_{\overline{A}_b^0}(-\overline{C}_{\widehat{T}} > 0) - N_{\overline{A}_b^0}(-\overline{C}_{\widehat{T}} < 0)}{N_{\overline{A}^0}(-\overline{C}_{\widehat{T}} > 0) + N_{\overline{A}^0}(-\overline{C}_{\widehat{T}} < 0)}$ *CP*-violating observable: $a_{CP}^{\hat{T}-\text{odd}} = \frac{1}{2}(A_{\hat{T}} - A_{\bar{T}})$ *P*-violating observable: $a_P^{\hat{T}-\text{odd}} = \frac{1}{2}(A_{\hat{T}} + A_{\bar{T}})$

CPV in $B^0 \rightarrow p\overline{p}K^+\pi^-$ with Run 1&2

Measurement asymmetries in phase space regions

> Two different schemes to avoid possible biases

CPV in charm

CPV in charm decays, # events we need?

CPV in SM is small:				# events
B meson	:	O(1)	discovered (2001)	10 ³
K meson	:	O(10 ⁻³)	discovered (1964)	10 ⁶
D meson	:	O(10 ⁻⁴)	discovered(2019)	10 ⁸

> First observation of CP violation in charm decays in 2019

 $\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$, Phys. Rev. Lett. 122 (2019) 211803

Search new sources of CP violation beyond the SM in charm sector

The time-integrated A_{CP} in $D^0 \rightarrow K^+K^-$ with Run 2 data

> The time-integrated A_{CP}

$$\mathcal{A}_{CP}(f) \equiv \frac{\int \mathrm{d}t \,\epsilon(t) \left[\Gamma(D^0 \to f)(t) - \Gamma(\overline{D}^0 \to f)(t) \right]}{\int \mathrm{d}t \,\epsilon(t) \left[\Gamma(D^0 \to f)(t) + \Gamma(\overline{D}^0 \to f)(t) \right]},$$

- $\succ D^0$ from $D^{*+} \rightarrow D^0 \pi^+$
- > "tagging" pion to identify the flavor of the D^0

$$A(K^{-}K^{+}) \equiv \frac{N(D^{*+} \to D^{0}\pi^{+}) - N(D^{*-} \to \overline{D}^{0}\pi^{-})}{N(D^{*+} \to D^{0}\pi^{+}) + N(D^{*-} \to \overline{D}^{0}\pi^{-})},$$
$$A(K^{-}K^{+}) \approx \mathcal{A}_{CP}(K^{-}K^{+}) + A_{P}(D^{*+}) + A_{D}(\pi^{+}_{tag}),$$

 $\succ D^+$ and D_s^+ to get $A_P(D^{*+}) \rightarrow \mathcal{O}(10^{-6})$

$$\begin{split} \mathbf{C}_{D^+} &: \mathcal{A}_{CP}(K^-K^+) = A(K^-K^+) - A(K^-\pi^+) + A(K^-\pi^+\pi^+) - A(\overline{K}{}^0\pi^+) + A(\overline{K}{}^0), \\ \mathbf{C}_{D^+_s} &: \mathcal{A}_{CP}(K^-K^+) = A(K^-K^+) - A(K^-\pi^+) + A(\phi\pi^+) - A(\overline{K}{}^0K^+) + A(\overline{K}{}^0). \end{split}$$

The time-integrated A_{CP} in $D^0 \rightarrow K^+K^-$ with Run 2 data

19

Measurement of A_{CP} in $D^+_{(s)} \rightarrow \eta(\eta')\pi^+$ with Run 2 data

 $\mathcal{A}^{\rm raw}(D^+_{(s)} \to f^+) \equiv \frac{N(D^+_{(s)} \to f^+) - N(D^-_{(s)} \to f^-)}{N(D^+_{(s)} \to f^+) + N(D^-_{(s)} \to f^-)}. \quad \mathcal{A}^{\rm raw}(D^+_{(s)} \to f^+) \approx \mathcal{A}^{CP}(D^+_{(s)} \to f^+) + \mathcal{A}^{\rm prod}(D^+_{(s)}) + \mathcal{A}^{\rm det}(f^+),$

 $\succ D^+_{(s)} \rightarrow \phi \pi^+ \text{ to get } A_P(D^+_{(s)})$

$$\begin{split} \mathcal{A}^{CP}(D^+ \to \eta \pi^+) &= (0.34 \pm 0.66 \pm 0.16 \pm 0.05)\%, \\ \mathcal{A}^{CP}(D^+_s \to \eta \pi^+) &= (0.32 \pm 0.51 \pm 0.12)\%, \\ \mathcal{A}^{CP}(D^+ \to \eta' \pi^+) &= (0.49 \pm 0.18 \pm 0.06 \pm 0.05)\%, \\ \mathcal{A}^{CP}(D^+_s \to \eta' \pi^+) &= (0.01 \pm 0.12 \pm 0.08)\%, \end{split}$$

- Consistent with the absence of CPV
- > The most precise to date for these decays

Summary and prospects

> There is no sign of CP violation beyond the SM source yet

□ Charmless *B* decays: two-body, three-body and four-body decay

□ Search CPV in charm: $D^0 \to K^+K^-$, $D^+_{(s)} \to \eta(\eta')\pi^+$

> Opportunities with Run 3&4 (50 fb^{-1})

- **I** Higher precision in benchmark measurements: γ , β , ϕ_s , A_{CP} , ...
- □ Wider scope for exploitation: CPV in baryon decays, CPV in rare decays,...

Measurements of *γ* angle

How to measure γ angle

> The least known CKM variable; Access via $b \rightarrow u$ and $b \rightarrow c$ interference

> Sensitive channels with small BFs: need to combine many channels

GLW: D = CP eigenstates, e.g. KK, $\pi\pi$ M. Gronau and D. Wyler, Phys. Lett. B 253 (1991) 483
M.Gronau and D. London, Phys. Lett. B 265 (1991) 172ADS: D = quasi-flavour-specific states e.g. $K\pi$ D. Atwood, I. Dunietz and A. Soni,
Phys. Rev. Lett. 78 (1997) 3257GGSZ: D = self-conjugate multi(3)-body states e.g. $K_s\pi\pi$ A. Giri, Y. Grossman, A. Soffer and J.
Zupan, Phys. Rev. D68 (2003) 054018
Y. Grossman, Z. Ligeti
and A. Soffer. Phys. Rev.
D67 (2003) 071301

 $> B^{\pm} \rightarrow D(\rightarrow K^{+}\pi^{-}\pi^{0})h^{\pm} \text{ and } B^{\pm} \rightarrow D(\rightarrow \pi^{+}K^{-}\pi^{0})h^{\pm}$ $> \text{Partially reconstructed } B^{\pm} \rightarrow D^{*}h^{\pm}$ $> A_{K\pi\pi^{0}}^{K} = -0.024 \pm 0.013 \pm 0.002$

JHEP 07 (2022) 099

$$\begin{array}{rcl} \gamma & = & (56 \, {}^{+24}_{-19})^{\circ}, \\ \delta_B & = & (122 \, {}^{+19}_{-23})^{\circ}, \\ r_B & = & (9.3 \, {}^{+1.0}_{-0.9}) \times 10^{-2}, \end{array}$$