Recent CPV measurements at LHCb

俞洁晟（湖南大学）

第十九届重味物理和CP破坏研讨会 2022年12月9－11日

Outline

＞Introduction

$>$ CPV in charmless B decays
$>$ Measurements of γ angle（backup）张䂛楠的报告
$>$ CPV in charm

CP violation

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{c}
V_{u d} V_{u s} V_{u b} \\
V_{c d} V_{c s} V_{c b} \\
V_{t d} V_{t s} V_{t b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

CKM mixing matrix

> Origin of CPV in SM: nonzero CKM weak phase ($\eta \neq 0$ in Wolfenstein parameterization)

> CPV provided by the SM is short by $10^{\mathbf{1 0}}$ to explain the Baryon Asymmetry in the Universe

Unitarity triangles

> Test unitarity by measuring sides (rates, B_{q}^{0} mixing) and angles (CP asymmetries)

Three types of CPV

\boldsymbol{C}^{β} in decay

C' in mixing ("indirect CP")

$$
|\not \overline{\mathrm{P}}-\mathrm{P}| \nmid \overline{\mathrm{P}}-\overline{\mathrm{P}} \left\lvert\, \begin{array}{ll}
\left|P_{1}\right\rangle=p\left|P^{o}\right\rangle+q\left|\bar{P}^{o}\right\rangle & |q / p| 2 \\
\left|P_{2}\right\rangle=p\left|P^{o}\right\rangle-q\left|\bar{P}^{o}\right\rangle & \neq 1
\end{array}\right.
$$

$S_{S} P$ in interference between mixing and decay ("Mixing induced $g P$ ")

CPV in charmless B decays

$$
V_{C K M} \approx\left(\begin{array}{ccc|}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda-i A^{2} \lambda^{5} \eta & 1-\lambda^{2} & A \lambda^{2} \\
\frac{A \lambda^{3}(1-\hat{\rho}-i \hat{\eta})}{\left|V_{t d}\right| e^{-i \beta}} & \frac{-A \lambda^{2}-i A \lambda^{4} \eta}{-\left|V_{t s}\right| e^{i \beta_{s}}} & 1
\end{array}\left|V_{u b}\right| e^{-i \gamma}\right.
$$

Charmless B decays

$>$ Mediated by $b \rightarrow u$ tree and $b \rightarrow d(s)$ penguin diagrams with comparable magnitude and large weak phases
> Expecting direct CPV

$B \rightarrow P V$ decays with Run 2 data

Quasi-two-body $B \rightarrow P V$ decays: $B^{ \pm} \rightarrow R\left(\rightarrow h_{1}^{-} h_{2}^{+}\right) h_{3}^{ \pm}$
Phys. Rev. D94 (2016) 054028
> A new method: resonances with masses below or around $1 \mathbf{G e V} / \mathbf{c}^{\mathbf{2}}$

	$B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$	$B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$	$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$	$B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$
B^{-}	243960	159673	51977	17161
B^{+}	240884	176345	44389	21178
Purity	0.91	0.96	0.88	0.76

arXiv:2206.02038

$B \rightarrow P V$ decays with Run 2 data

Decay channel	This work	Previous measurements
$B^{ \pm} \rightarrow\left(\rho(770)^{0} \rightarrow \pi^{+} \pi^{-}\right) \pi^{ \pm}$	$-0.004 \pm 0.017 \pm 0.009$	$+0.007 \pm 0.011 \pm 0.016(\mathrm{LHCb}[20,21])$
$B^{ \pm} \rightarrow\left(\rho(770)^{0} \rightarrow \pi^{+} \pi^{-}\right) K^{ \pm}$	$+0.150 \pm 0.019 \pm 0.011$	$\begin{aligned} & +0.44 \pm 0.10 \pm 0.04 \text { (BaBar [28]) } \\ & +0.30 \pm 0.11 \pm 0.02 \text { (Belle [22]) } \end{aligned}$
$B^{ \pm} \rightarrow\left(\stackrel{(}{K}^{*} *(892)^{0} \rightarrow K^{ \pm} \pi^{\mp}\right) \pi^{ \pm}$	$-0.015 \pm 0.021 \pm 0.012$	$\begin{aligned} & +0.032 \pm 0.052 \pm 0.011(\text { BaBar [28] }) \\ & -0.149 \pm 0.064 \pm 0.020(\text { Belle [22]) } \end{aligned}$
$B^{ \pm} \rightarrow\left(\stackrel{(}{K}^{*} *(892)^{0} \rightarrow K^{ \pm} \pi^{\mp}\right) K^{ \pm}$	$+0.007 \pm 0.054 \pm 0.032$	$+0.123 \pm 0.087 \pm 0.045(\mathrm{LHCb}$ [19])
$B^{ \pm} \rightarrow\left(\phi(1020) \rightarrow K^{+} K^{-}\right) K^{ \pm}$	$+0.004 \pm 0.014 \pm 0.007$	$+0.128 \pm 0.044 \pm 0.013($ BaBar [26])

arXiv:2206.02038
> A new method, without the need for amplitude analyses
$>$ For $B^{ \pm} \rightarrow \boldsymbol{\rho}(770) K^{ \pm}: 6.8 \sigma$ differs from 0
$>$ For the other channels, $A_{C P} \approx 0$ (CPT symmetry)
$>$ More precise than the previous results
$>$ Localised $A_{C P}$ in $B \rightarrow 3 \pi, 3 K, K K \pi, K \pi \pi$

Prog. Part. Nucl. Phys. 114 (2020) 103808
$>$ Originating from long-distance hadronic interactions

```
\square f}\mp@subsup{\boldsymbol{f}}{\mathbf{0}}{(500)-\boldsymbol{\rho}(\mathbf{770}) arXiv:2209.02348 Phys. Rev. D 105, 093007(2022)
\square\pi\pi}-K
```


Three-body charmless B decay with Run 2 data

$$
\begin{aligned}
A_{C P}\left(B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}\right) & =+0.011 \pm 0.002 \pm 0.003 \pm 0.003 \\
A_{C P}\left(B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}\right) & =-0.037 \pm 0.002 \pm 0.002 \pm 0.003 \\
A_{C P}\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}\right) & =+0.080 \pm 0.004 \pm 0.003 \pm 0.003 \\
A_{C P}\left(B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}\right) & =-0.114 \pm 0.007 \pm 0.003 \pm 0.003
\end{aligned}
$$

$>$ Significant $A_{C P}: B \rightarrow 3 \pi, 3 K$ for the first time
Confirmed high localised $A_{C P}$

Search for CPV using TPA

$>$ Triple products in Λ_{b} rest frame $\widehat{T}=$ motion reversal operator

$$
\begin{aligned}
& C_{\widehat{T}}=\vec{p}_{p} \cdot\left(\vec{p}_{h^{-}} \times \vec{p}_{h^{+}}\right) \propto \sin \Phi \\
& \bar{C}_{\widehat{T}}=\vec{p}_{\bar{p}} \cdot\left(\vec{p}_{h^{+}} \times \vec{p}_{h^{-}}\right) \propto \sin \bar{\Phi}
\end{aligned}
$$

$>\hat{T}$ - odd asymmetries:

$$
A_{\widehat{T}}=\frac{N_{\Lambda_{b}^{0}}\left(C_{\widehat{T}}>0\right)-N_{\Lambda_{b}^{0}}\left(C_{\widehat{T}}<0\right)}{N_{\Lambda_{b}^{0}}\left(C_{\widehat{T}}>0\right)+N_{\Lambda_{b}^{0}}\left(C_{\widehat{T}}<0\right)},
$$

$\bar{A}_{\widehat{T}}=\frac{N_{\bar{\Lambda}_{b}^{0}}\left(-\bar{C}_{\widehat{T}}>0\right)-N_{\bar{\Lambda}_{b}^{0}}\left(-\bar{C}_{\widehat{T}}<0\right)}{N_{\bar{\Lambda}_{b}^{0}}\left(-\bar{C}_{\widehat{T}}>0\right)+N_{\bar{\Lambda}_{b}^{0}}\left(-\bar{C}_{\widehat{T}}<0\right)}$
$C P$-violating observable: $a_{C P}^{\hat{T} \text {-odd }}=\frac{1}{2}\left(A_{\hat{T}}-A_{\bar{T}}\right)$
P-violating observable: $a_{P}^{\hat{T}-\text { odd }}=\frac{1}{2}\left(A_{\hat{T}}+A_{\hat{T}}\right)$

CPV in $B^{0} \rightarrow p \bar{p} K^{+} \pi^{-}$with Run 1\&2

$a_{P}^{\hat{T} \text {-odd }}=(1.49 \pm 0.85 \pm 0.08) \%$,
$a_{C P}^{\hat{T} \text {-odd }}=(0.51 \pm 0.85 \pm 0.08) \%$,
arXiv:2205.08973

Measurement asymmetries in phase space regions

> Two different schemes to avoid possible biases

> No CP and P-violation

CPV in charm

$$
V_{C K M} \approx\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda-i A^{2} \lambda^{5} \eta & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\hat{\rho}-i \hat{\eta}) & -A \lambda^{2}-i A \lambda^{4} \eta & 1
\end{array}\right)
$$

CPV in charm decays, \# events we need?

CPV in SM is small :	\# events	
B meson :	$\mathrm{O}(1) \quad$ discovered (2001)	$10^{\mathbf{3}}$
K meson :	$\mathrm{O}\left(10^{-3}\right)$ discovered (1964)	10^{6}
D meson :	$\mathrm{O}\left(10^{-4}\right)$ discovered(2019)	$10^{\mathbf{8}}$

> First observation of CP violation in charm decays in 2019

$$
\Delta A_{C P}=(-15.4 \pm 2.9) \times 10^{-4}, \quad \text { Phys. Rev. Lett. } 122 \text { (2019) } 211803
$$

$>$ Search new sources of CP violation beyond the SM in charm sector

The time-integrated $A_{C P}$ in $D^{0} \rightarrow K^{+} K^{-}$with Run 2 data
$>$ The time-integrated $A_{C P}$

$$
\mathcal{A}_{C P}(f) \equiv \frac{\int \mathrm{d} t \epsilon(t)\left[\Gamma\left(D^{0} \rightarrow f\right)(t)-\Gamma\left(\bar{D}^{0} \rightarrow f\right)(t)\right]}{\int \mathrm{d} t \epsilon(t)\left[\Gamma\left(D^{0} \rightarrow f\right)(t)+\Gamma\left(\bar{D}^{0} \rightarrow f\right)(t)\right]},
$$

$>D^{0}$ from $D^{*+} \rightarrow D^{0} \pi^{+}$
$>$ "tagging" pion to identify the flavor of the D^{0}

$$
\begin{aligned}
& A\left(K^{-} K^{+}\right) \equiv \frac{N\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)-N\left(D^{*-} \rightarrow \bar{D}^{0} \pi^{-}\right)}{N\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)+N\left(D^{*-} \rightarrow \bar{D}^{0} \pi^{-}\right)} \\
& A\left(K^{-} K^{+}\right) \approx \mathcal{A}_{C P}\left(K^{-} K^{+}\right)+A_{\mathrm{P}}\left(D^{*+}\right)+A_{\mathrm{D}}\left(\pi_{\text {tag }}^{+}\right),
\end{aligned}
$$

$>D^{+}$and D_{s}^{+}to get $A_{P}\left(D^{*+}\right) \rightarrow \boldsymbol{O}\left(\mathbf{1 0}^{-6}\right)$

$$
\begin{aligned}
& \mathrm{C}_{D^{+}}: \mathcal{A}_{C P}\left(K^{-} K^{+}\right)=A\left(K^{-} K^{+}\right)-A\left(K^{-} \pi^{+}\right)+A\left(K^{-} \pi^{+} \pi^{+}\right)-A\left(\bar{K}^{0} \pi^{+}\right)+A\left(\bar{K}^{0}\right), \\
& \mathrm{C}_{D_{s}^{+}}: \mathcal{A}_{C P}\left(K^{-} K^{+}\right)=A\left(K^{-} K^{+}\right)-A\left(K^{-} \pi^{+}\right)+A\left(\phi \pi^{+}\right)-A\left(\bar{K}^{0} K^{+}\right)+A\left(\bar{K}^{0}\right) .
\end{aligned}
$$

The time-integrated $A_{C P}$ in $D^{0} \rightarrow K^{+} K^{-}$with Run 2 data

arXiv:2209.03179
$\mathrm{C}_{D^{+}}: \mathcal{A}_{C P}\left(K^{-} K^{+}\right)=[13.6 \pm 8.8($ stat $) \pm 1.6($ syst $)] \times 10^{-4}$,
$\mathrm{C}_{D_{s}^{+}}: \mathcal{A}_{C P}\left(K^{-} K^{+}\right)=[2.8 \pm 6.7$ (stat) ± 2.0 (syst) $] \times 10^{-4}$,
$\mathcal{A}_{C P}\left(K^{-} K^{+}\right)=[6.8 \pm 5.4($ stat $) \pm 1.6($ syst $)] \times 10^{-4}$,
$>1.4 \sigma$ for $D^{0} \rightarrow K^{+} K^{-}$and 3.8σ for $D^{0} \rightarrow$ $\pi^{+} \pi^{-}$
$>$ The first evidence for direct CPV in a specific D^{0} decay.

$$
a_{\pi^{-\pi+}}^{d}=(23.2 \pm 6.1) \times 10^{-4},
$$

Measurement of $A_{C P}$ in $D_{(s)}^{+} \rightarrow \eta\left(\eta^{\prime}\right) \pi^{+}$with Run 2 data

$$
\mathcal{A}^{\mathrm{rav}}\left(D_{(s)}^{+} \rightarrow f^{+}\right) \equiv \frac{N\left(D_{(s)}^{+} \rightarrow f^{+}\right)-N\left(D_{(s)}^{-} \rightarrow f^{-}\right)}{N\left(D_{(s)}^{+} \rightarrow f^{+}\right)+N\left(D_{(s)}^{-} \rightarrow f^{-}\right)} . \quad \mathcal{A}^{\mathrm{raw}}\left(D_{(s)}^{+} \rightarrow f^{+}\right) \approx \mathcal{A}^{C P}\left(D_{(s)}^{+} \rightarrow f^{+}\right)+\mathcal{A}^{\mathrm{prod}}\left(D_{(s)}^{+}\right)+\mathcal{A}^{\mathrm{det}}\left(f^{+}\right),
$$

$$
>D_{(s)}^{+} \rightarrow \phi \pi^{+} \text {to get } A_{P}\left(D_{(s)}^{+}\right)
$$

$\mathcal{A}^{C P}\left(D^{+} \rightarrow \eta \pi^{+}\right)=(0.34 \pm 0.66 \pm 0.16 \pm 0.05) \%$,
$\mathcal{A}^{C P}\left(D_{s}^{+} \rightarrow \eta \pi^{+}\right)=(0.32 \pm 0.51 \pm 0.12) \%$,
$\mathcal{A}^{C P}\left(D^{+} \rightarrow \eta^{\prime} \pi^{+}\right)=(0.49 \pm 0.18 \pm 0.06 \pm 0.05) \%$,
> Consistent with the absence of CPV
> The most precise to date for these decays
$\mathcal{A}^{C P}\left(D_{s}^{+} \rightarrow \eta^{\prime} \pi^{+}\right)=(0.01 \pm 0.12 \pm 0.08) \%$,

Summary and prospects

$>$ There is no sign of CP violation beyond the SM source yet

- Charmless B decays: two-body, three-body and four-body decay
\square Search CPV in charm: $\boldsymbol{D}^{\mathbf{0}} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-}, \boldsymbol{D}_{(\boldsymbol{s})}^{+} \rightarrow \boldsymbol{\eta}\left(\boldsymbol{\eta}^{\prime}\right) \boldsymbol{\pi}^{+}$
$>$ Opportunities with Run $3 \& 4$ ($50 \mathbf{~ f b}^{-1}$)
\square Higher precision in benchmark measurements: $\gamma, \beta, \phi_{s}, \mathrm{~A}_{\mathrm{CP}}, \ldots$
- Wider scope for exploitation: CPV in baryon decays, CPV in rare decays,...

Backup

Measurements of γ angle

$$
V_{C K M} \approx\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda-i A^{2} \lambda^{5} \eta & 1-\lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\hat{\rho}-i \hat{\eta}) & -A \lambda^{2}-i A \lambda^{4} \eta & 1
\end{array}\right)\left|V_{u b}\right| e^{-i \gamma}
$$

How to measure γ angle

$>$ The least known CKM variable; Access via $\mathrm{b} \rightarrow \mathrm{u}$ and $\mathrm{b} \rightarrow \mathrm{c}$ interference

Clean test of standard model

$>$ Sensitive channels with small BFs: need to combine many channels
GLW: $\mathrm{D}=\mathrm{CP}$ eigenstates, e.g. KK, $\pi \pi$

ADS: $\mathrm{D}=$ quasi-flavour-specific states e.g. $\mathrm{K} \pi$
GGSZ: $\mathrm{D}=$ self-conjugate multi(3)-body states e.g. $\mathrm{K}_{s} \pi \pi$
D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78 (1997) 3257
A. Giri, Y. Grossman, A. Soffer and J Zupan, Phys. Rev. D68 (2003) 054018 Y. Grossman, Z. Ligeti

GLS: ADS variant with singly Cabbibo-suppresed decay $\mathrm{D} \rightarrow \mathrm{K}_{s} \mathrm{~K} \pi$ and A . Soffer. Phys. Rev. D67 (2003) 071301

Three-body D decays $B^{ \pm} \rightarrow D h^{ \pm}$with Run 1\&2 data

$>B^{ \pm} \rightarrow \boldsymbol{D}\left(\rightarrow K^{+} \pi^{-} \boldsymbol{\pi}^{0}\right) \boldsymbol{h}^{ \pm}$and $B^{ \pm} \rightarrow \boldsymbol{D}\left(\rightarrow \pi^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{0}\right) \boldsymbol{h}^{ \pm}$
$>$ Partially reconstructed $\boldsymbol{B}^{ \pm} \rightarrow \boldsymbol{D}^{*} \boldsymbol{h}^{ \pm}$
$>A_{K \pi \pi^{0}}^{K}=-0.024 \pm 0.013 \pm 0.002$

Three-body D decays $B^{ \pm} \rightarrow D h^{ \pm}$with Run 1\&2 data

Three-body D decays $B^{ \pm} \rightarrow D h^{ \pm}$with Run 1\&2 data

Three-body D decays $B^{ \pm} \rightarrow D h^{ \pm}$with Run 1\&2 data

JHEP 07 (2022) 099

$$
\begin{aligned}
\gamma & =\left(56_{-19}^{+24}\right)^{\circ} \\
\delta_{B} & =\left(122_{-23}^{+19}\right)^{\circ} \\
r_{B} & =\left(9.3_{-0.9}^{+1.0}\right) \times 10^{-2}
\end{aligned}
$$

