MEASUREMENTS OF CKM ANGLE γ AT LHCb

Shunan Zhang

December 10th, 2022

HFCPV 2022

The CKM matrix and CP violation

 CP violation (CPV) of quarks in SM originates from the weak phase in Cabibbo-Kobayashi-Maskawa (CKM) matrix
 [Phys.Rev.Lett. 10 (1963) 531] [Prog.Theor.Phys. 49 (1973) 652]

$$\begin{bmatrix} d'\\s'\\b' \end{bmatrix} = V_{\text{CKM}} \begin{bmatrix} d\\s\\b \end{bmatrix} = \begin{bmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{bmatrix} \begin{bmatrix} d\\s\\b \end{bmatrix}$$

- Unitarity of CKM matrix \implies the unitarity triangle (UT)
- Area of UT indicates the magnitude of CPV in SM
- CPV in SM not sufficient
 - probe BSM physics indirectly by overconstraining CKM parameters

$$\gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

- γ is the only angle accessible in tree-level
- SM benchmark value effectively no theory uncertainty [JHEP 01 (2014) 051]
- Search for BSM: direct vs. indirect measurement
 - direct: measure γ from tree-level decays
 - indirect: assume UT is closed and infer γ from other processes

CKMfitter, Preliminary results as of spring 2021

a sub-degree precision is needed

Approaches to probe γ

- γ can be accessed via interference between $b \rightarrow cW$ and $b \rightarrow uW$ transitions
- Textbook case: $B^{\pm} \rightarrow [f]_D K^{\pm}$

$$\begin{split} &\Gamma \propto r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D - \gamma) \\ &\stackrel{CP}{\Leftrightarrow} \overline{\Gamma} \propto r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D + \gamma) \end{split}$$

- GLW method: $f = K^+ K^-, \pi^+ \pi^-$, etc.
- ADS method: $f = K^{\mp}\pi^{\pm}(\pi^{\pm}\pi^{\mp})$, etc.
- BPGGSZ method: $f = K_S^0 \pi \pi, K_S^0 K K$, etc.
- Time-dependent (TD) method: $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$, etc.

[Phys.Lett.B 253 (1991) 483], [Phys.Lett.B 265 (1991) 172] [Phys.Rev.Lett. 78 (1997) 3257], [Phys.Rev.D 63 (2001) 036005]

[Phys.Rev.D 68 (2003) 054018]

The LHCb detector

[JINST 3 (2008) S08005]

GLW/ADS analysis of $B^\pm ightarrow [h^+h^-]_D h^\pm$ [JHEP 04 (2021) 081]

• GLW mode: $B^{\pm} \rightarrow [\pi^{+}\pi^{-}]_{D}h^{\pm}$, $B^{\pm} \rightarrow [K^{+}K^{-}]_{D}h^{\pm}$

Asymmetry

GLW/ADS analysis of $B^{\pm} \rightarrow [h^+h^-]_D h^{\pm}$

- ADS mode: $B^{\pm} \rightarrow \left[K^{\mp}\pi^{\pm}\right]_{D}h^{\pm}$, larger interference between
 - favored *B* decay + DCS *D* decay ($r_D^{K\pi} \sim 0.06$)
 - suppressed *B* decay ($r_B^{DK} \sim 0.1$) + CF *D* decay

[JHEP 04 (2021) 081]

BPGGSZ analysis of $B^{\pm} \rightarrow \left[K_{\rm S}^0 h^+ h^-\right]_{\rm D} h^{\pm}$

- D decays to self-conjugated state K⁰_Sh⁺h⁻
 - each point on the 3-body phase space contribute different r_D , δ_D different sensitivity to γ on the Dalitz plot
- In practice, the Dalitz plots are split into different bins
 - binning schemes are optimized for maximum statistical sensitivity

 charm parameters in each bin are measured by BESIII & CLEO experiment

 independent of K⁰_S hh amplitude model
 [Phys.Rev.D 82 (2010) 112006] [Phys.Rev.D 101 (2020) 11, 112002]

[Phys.Rev.D 101 (2020) 11, 112002] [Phys.Rev.D 102 (2020) 5, 052008]

[JHEP 02 (2021) 169

BPGGSZ analysis of $B^{\pm} \rightarrow \left[K_{\rm S}^0 h^+ h^-\right]_D h^{\pm}$

0.04LHCb $B^{\pm} \rightarrow D\pi^{\pm}$ $B^{\pm} \rightarrow DK^{\pm}$ LHCb 0.8 $(N^{-}_{-i} - N^{+}_{+i})/(N^{-}_{-i} + N^{+}_{+i})$ $(N^{-}_{-i} - N^{+}_{+i})/(N^{-}_{-i} + N^{+}_{+i})$ 0.020.60.00 0.4-0.020.2-0.040.0 -0.06-0.08 $K^0_c K^+ K$ -0.2-8-7-6-5-4-3-2-112345678-2-112 -8-7-6-5-4-3-2-112345678-2-112 Effective bin iEffective bin i

- *CP* violation is clearly observed in $B^{\pm} \rightarrow DK^{\pm}$
- Data insufficient to see CPV in $B^{\pm} \rightarrow D\pi^{\pm}$

$$\gamma = \left(68.7^{+5.2}_{-5.1}\right)^{\circ}$$

- So far the most precise single measurement on γ
- $B^{\pm} \rightarrow D\pi^{\pm}$ parameters also measured

[JHEP 02 (2021) 169

 ADS decay of D meson, but also has phase space dependent sensitivity to γ – measured in a binned approach

- binning phase space on D decay strong phase $\delta_D^{K3\pi}$
- D decay parameters measured by BESIII experiment

[JHEP 05 (2021) 164]

LHCb THCp

 $\gamma = (54.8^{+6.0}_{-5.8}, -0.6}^{+0.0}_{-4.3})^{\circ}$

TD analysis of $B_s^0 ightarrow D_s^{\mp} h^{\pm} \pi^+ \pi^-$ [JHEP 03 (2021) 137]

- Two processes at same order in terms of CKM matrix elements
- Time-dependent decay rates provide info on CPV during $B_s^0 \bar{B}_s^0$ mixing and decay

• An important contribution to γ from B_s^0 decays

- Most precise direct measurement on γ from a single experiment
 - reached < 4°, got closer to indirect determination $\gamma_{ind.} = (65.5^{+1.1}_{-2.7})^{\circ}$
- γ was improved by ~ 10% compared to previous combination [JHEP 12 (2021) 141]
 - biggest improvement comes from $B^{\pm} \rightarrow [K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}]_{D}h^{\pm}$ result
- $\sim 2\sigma$ tension between different *B* categories

Summary & prospects

- 10 years of measurements from LHCb has significantly improved our knowledge to γ
- γ is no longer the least well-determined weak phase
- LHCb already achieved a precision of < 4°, with many analyses to be added. Possible to reach 3° in Run1&2?
- Aiming for < 1° in Upgrade I era
 - $\sim 1.5^{\circ}$ after Run3 (23 fb⁻¹, 2025)
 - $\sim 1^{\circ}$ after Run4 (50 fb⁻¹, 2030)
 - sub-degree precision may come sooner than we expect!

Stay Tuned

Backup

Asymmetry

$$A_h^f = \frac{\Gamma\left(B^- \to D_f^{(*)}h^-\right) - \Gamma\left(B^+ \to D_f^{(*)}h^+\right)}{\Gamma\left(B^- \to D_f^{(*)}h^-\right) + \Gamma\left(B^+ \to D_f^{(*)}h^+\right)}$$

GLW mode

$$A_{K}^{CP\pm} = \frac{\pm 2r_{B}^{DK}\sin\delta_{B}^{DK}\sin\gamma}{1 + (r_{B}^{DK})^{2} + 2r_{B}^{DK}\cos\delta_{B}^{DK}\cos\gamma}$$

ADS mode

$$A_{K}^{\pi K} = \frac{2r_{B}^{DK}r_{D}^{K\pi}\sin(\delta_{B}^{DK} + \delta_{D}^{K\pi})\sin\gamma}{(r_{B}^{DK})^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}^{DK}r_{D}^{K\pi}\cos(\delta_{B}^{DK} + \delta_{D}^{K\pi})\cos\gamma}$$

[JHEP 04 (2021) 081]

BPGGSZ analysis of $B^{\pm} \rightarrow \left[K_{\rm S}^0 h^+ h^-\right]_D h^{\pm}$

• Amplitude of $B^- \rightarrow [K_S^0 \pi^+ \pi^-]_D K^ A_B(m_+^2, m_-^2) = A_D(m_+^2, m_-^2) + r_B^{DK} e^{i(\delta_B^{DK} - \gamma)} A_D(m_-^2, m_+^2)$

[JHEP 02 (2021) 169

Binned equation

$$N_i^{\pm} = h_{\pm} \left[F_i + \left(x_{\pm}^2 + y_{\pm}^2 \right) F_{-i} + 2\sqrt{F_i F_{-i}} (x_{\pm} c_i + y_{\pm} s_i) \right]$$

- N_i^{\pm} : number of B^{\pm} signal in bin *i*
- F_i : fraction of D^0 events in bin *i*
- c_i, s_i: strong phase parameters, measured by CLEO and BESIII
- x_{\pm}, y_{\pm} : *CP* observables, $x_{\pm} + iy_{\pm} = r_B^{DK} e^{i(\delta_B^{DK} \pm \gamma)}$

• Visible *CP* asymmetry in $B^{\pm} \rightarrow DK^{\pm}$

[JHEP 02 (2021) 169]

TD analysis of $B_s^0 \rightarrow D_s^{\pm} h^{\pm} \pi^+ \pi^-$ [JHEP 03 (2021) 137]

• Two processes at same order in terms of CKM matrix elements $|V_{cb}||V_{us}|$ vs. $|V_{ub}||V_{cs}|$

Time-dependent decay rate, phase space integrated

$$\frac{\mathrm{d}\Gamma(B_s^0 \to f)}{\mathrm{d}t} \propto \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + C_f \cos(\Delta m_s t) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) - S_f \sin(\Delta m_s t) \right] e^{-\Gamma_s t},$$

$$\frac{\mathrm{d}\Gamma(\bar{B}_s^0 \to f)}{\mathrm{d}t} \propto \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) - C_f \cos(\Delta m_s t) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) + S_f \sin(\Delta m_s t) \right] e^{-\Gamma_s t},$$

$$C_f = \frac{1-r^2}{1+r^2}$$

$$\begin{aligned} A_f^{\Delta\Gamma} &= -\frac{2r\kappa\cos(\delta - (\gamma - 2\beta_s))}{1 + r^2}, A_f^{\Delta\Gamma} &= -\frac{2r\kappa\cos(\delta + (\gamma - 2\beta_s))}{1 + r^2} \\ S_f &= +\frac{2r\kappa\sin(\delta - (\gamma - 2\beta_s))}{1 + r^2}, S_f &= -\frac{2r\kappa\sin(\delta + (\gamma - 2\beta_s))}{1 + r^2} \end{aligned}$$

B decay	D decay	Ref.	Dataset	Status since
				Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^-$	29	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	30	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	18	Run 1&2	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$	19	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{\rm S} h^+ h^-$	31	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	32	Run 1&2	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D ightarrow h^+ h^-$	29	Run 1&2	As before
$B^{\pm} \to DK^{*\pm}$	$D \rightarrow h^+ h^-$	33	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	33	Run $1\&2(*)$	As before
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D \rightarrow h^+ h^-$	34	Run 1	As before
$B^0 \to DK^{*0}$	$D \rightarrow h^+ h^-$	35	Run $1\&2(*)$	As before
$B^0 \to D K^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	35	Run $1\&2(*)$	As before
$B^0 ightarrow DK^{*0}$	$D ightarrow K_{ m S}^0 \pi^+ \pi^-$	36	$\operatorname{Run} 1$	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[37]	Run 1	As before
$B^0_s ightarrow D^{\mp}_s K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	38	Run 1	As before
$B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	39	Run 1&2	As before
• •	<u></u>	<u>∽</u> ^	-	~ ·

Lots of analyses to be updated with full LHCb Run1&2 data set

