A new channel to search for dark matter at Belle I

in collaboration with Zuowei Liu, Lan Yang, arXiv: 2212.04252

Jinhan Liang (梁锦汉) South China Normal University (华南师范大学)

HFCPV2022

DM evidence

Mono-X channel at collider

DMs are produced

at the primary collision point

and performed as missing energy

γ: Birkedal2004, Fox2011...

Jet: Feng2005, Bai2010...

t: Andrea2011, Agram2013...

b: Lin2013, Izaguirre2014...

Z/W: Petriello:2008, Bell:2012...

H: Petrov:2013, Carpenter:2013...

Belle II detectors

KLM:

Alternating sandwich of iron plates and active detector elements (RPC and scintillator strips)

Belle II physics book, 1808.10567

Belle II detectors

KLM: Endcap No activity at KLM KLM ECL: 4 GeV deposited energy

CDC: A charged track with p = 4 GeV

New channel at Belle II experiment

Bhabha scattering

Annihilation

DMs are generated in collisions between the positron and the ECL.

New channel at Belle II experiment

experiment with the ECL as the target.

- Signal:
- (1) Positron: a clear track in the CDC, very little energy deposited in the ECL
- (2) Electron: a clear track in the CDC, full energy deposited in the ECL
- (3) No tracks or clusters in the KLM

We treat Belle II as a positron fixed target

Positron flux from Bhabha scattering

dc

$$\frac{d\sigma_B}{\cos\theta^*} = \frac{\pi\alpha^2 (3 + \cos^2\theta^*)^2}{2s (1 + \cos\theta^*)^2},$$

$N_{e^+} \simeq 6 \times 10^{11} \ (\mathscr{L} = 50/ab)$ for the ECL barrel region

Backgrounds

Cuts: (1) Less than 5% of the positron energy deposited in the ECL barrel

(2) No clusters or tracks in the KLM

$N_{\gamma} \simeq 13, N_n \simeq 81$

New channel constraints on dark photon model

$\mathscr{L}_{\text{int}} = A'_{\mu}(eQ_f\epsilon f\gamma^{\mu}f + g_{\gamma}\bar{\chi}\gamma^{\mu}\chi)$

 A'_{μ} : dark photon

 χ : Dirac dark matter

f: SM fermion with charge Q

 ϵ, g_{γ} : coupling constants

New channel constraints on dark photon model

- The leading DM signature studied at colliders is mono-X channel, in which DMs are generated in the primary collision vertex.
- We propose a new DM searching channel at Belle II, in which DMs are generated in collisions between positrons and the ECL.
- For this new channel, the dominant backgrounds are from missing photons and neutrons.
- We use the dark photon model as the benchmark model and find that this new channel can set leading constraints in the mass region of $m_{A'} \simeq 66 \text{ MeV}$.

Photon Background estimation

positron with energy E and the ECL:

$$\frac{dN_{\gamma}}{dx_{\gamma}}(t,x_{\gamma}) \simeq \frac{1}{x_{\gamma}} \frac{(1-x_{\gamma})^{(4/3)t} - e^{-(7/9)t}}{7/9 + (4/3)\ln(1-x_{\gamma})},$$

 tX_0 : positron of the photon in the detector, $x_{\gamma} = E_{\gamma}/E$

escape the ECL detector:

$$\int_{0.95}^{1} dx_{\gamma} \frac{dN_{\gamma}}{dx_{\gamma}} (t = 16, x_{\gamma})$$

The energy distribution of photons that are produced in the collision between a

- The probability of a photon carrying more than 95% of the positron energy to

 2.8×10^{4} potential backgrounds $\simeq 4.7 \times 10^{-8}$ after the ECL with 50/ab

Photon Background estimation Photon KLM veto efficiency

Photons may be not detected in the KLM due to not-instrumented setups

 $\simeq 13$ photon backgrounds after KLM veto

Adopt BABAR IFR veto efficiency $\epsilon = 4.5 \times 10^{-4}$ as a conservative estimate.

Neutron Background estimation

High energy neutron generation rate estimate with GEANT4 simulation

Simulate collisions of 10^9 positrons with 4.35 GeV energy onto a CsI target with one X_0 , by using GEANT4 with the FTFP_BERT physics list.

(1) At least one neutron with energy exceeding 3 GeV

(2) The deposited energy in the ECL to be less than 5% of the positron energy

64 events survive after two vetos

Neutron Background estimation

Neutron KLM veto efficiency

Classify the remaining events according to the number of neutrons that have kinetic energy exceeding 280 MeV

The probability for a neutron to penetrate a target with length \boldsymbol{L}

 $P = \exp(-L/\lambda_0) \simeq 0.01$

 λ_0 : the hadronic interaction length; The KLM (ECL) has $3.9(0.8)\lambda_0$

 $\simeq 81$ neutron backgrounds for 50/ab after KLM veto

