

Recent Charm Physics Results from LHCb

Liang Sun Wuhan University 2022-12-10 全国第十九届重味物理和 CP 破坏研讨会

LHCb charm results since HFCPV2021

- Charm mixing & CPV
 - Mixing parameters in $D^0 \rightarrow h^-h^+$ [Phys. Rev. D105 (2022) 092013]
 - Mixing parameters in $\overline{B} \rightarrow D^{0}(\rightarrow K_{S}{}^{0}\pi^{+}\pi^{-})\mu^{-}\overline{\nu}_{\mu}X$ [arXiv:2208.06512]
 - For CP-only results ($A_{CP}(h^+h^-)$, etc.), please see Jiesheng's talk
- Amplitude analyses of 3-body charm hadron decays
 - D⁺ → π⁺π⁺π⁻ [arXiv:2208.03300], D_s⁺ → π⁺π⁺π⁻ [arXiv:2209.09840]
 - $Λ_c^+ → pK^-π^+$ [arXiv:2208.03261]
- Rare decays
- For other recent charm results (Ξ_{cc}^{++} related, etc.):

https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary_Charm.html

LHCb as a Charm factory

- LHCb acceptance: $2 < \eta < 5$ (forward region)
- Large production cross-section

[JHEP 03 (2016) 159]

 $\sigma(pp \rightarrow c \,\bar{c}) = (2369 \pm 3 \pm 152 \pm 118) \mu b @ 13 \,TeV$

- More than 1 billion $D^0 \rightarrow K^-\pi^+$ collected by LHCb between 2011 and 2018
- Run2: Turbo stream from online reconstruction [Comput. Phys. Commun. 208 (2016) 35]

D^o production at LHCb

D^o flavor tagging at LHCb

Mixing in neural D system

- Charm mixing a well established fact
 - Mass eigenstates are related to their flavor eigenstates via $|D_{12}\rangle \equiv p|D^0\rangle \pm q|D^0\rangle$, with $|q|^2 + |p|^2 \equiv 1$
 - Mixing parameters based on the mass and width differences:

 $x \equiv (m_2 - m_1)/\Gamma$, $y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$, with D^o decay width $\Gamma \equiv (\Gamma_2 + \Gamma_1)/2$

$$Prob(D^{0} \to \overline{D}^{0}, t) = \left|\frac{q}{p}\right|^{2} \frac{e^{-\Gamma t}}{2} (\cosh(\mathbf{y}\Gamma t) - \cos(x\Gamma t))$$

Experimental knowledge of x and y [HFLAV and PDG]

System	x	у
$K^0 - \overline{K}^0$	-0.946 ± 0.004	0.99650 ± 0.00001
$D^0 - \overline{D}^0$	$(4.07 \pm 0.44) \times 10^{-3}$	$(6.47 \pm 0.24) \times 10^{-3}$
$B^0 - \overline{B}^0$	-0.769 ± 0.004	$(0.1 \pm 0.1) \times 10^{-2}$
$B_s^0 - \overline{B}_s^0$	26.89 ± 0.07	$(12.9 \pm 0.6) \times 10^{-2}$

d, s, b

 $\bar{d}, \bar{s}, \bar{b}$

W

 $\overline{D}^0 W$

[Phys. Rev. D105 (2022) 092013]

Mixing parameters in $D^0 \rightarrow h^-h^+$ 10 - 10

* Note: $y_{CP} - y_{CP}^{K\pi}$ was previously called y_{CP} . Term $-y_{CP}^{K\pi} \approx +0.4 \times 10^{-3}$ was included because of $D^0 \rightarrow K^-\pi^+/D^0 \rightarrow K^+\pi^-$ mixing [JHEP03(2022)162]

[Phys. Rev. D105 (2022) 092013]

Mixing parameters in $D^0 \to h^- h^+$

[arXiv:2208.06512]

Mixing parameters in $\bar{B} \rightarrow D^0 (\rightarrow K_S^0 \pi^+ \pi^-) \mu^- \bar{\nu}_{\mu} X$

- Using Run2 (5.4 fb⁻¹) data, D⁰ from B decays & tagged by muon charge
- Complementary to prompt analysis $_{\rm [PRL\,127\,(2021)\,111801]}$, lower statistics (3.7 M vs. 31 M), but capable at small D⁰ decay times
- Bin-flip method: model-independent approach, no need for modeling of Dalitz-plot efficiency & decay amplitudes

• Data binned in Dalitz-plot regions $\pm b$, binning scheme chosen to have almost constant strong-phase differences between D^o and \overline{D}^o amplitudes

Simultaneous fit of the yield ratio R_b^{\pm} (\pm for initial D^0/\overline{D}^0) between +b and -b in bins of D^0 decay time t:

 $R_b^{\pm}(t) \approx r_b - \sqrt{r_b} [(1 - r_b)c_b \mathbf{y} - (1 + r_b)s_b \mathbf{x}] \Gamma t$

- $r_b \equiv R_b(t=0)$
 - c_b and s_b : parameters related to the strong phase differences between $\pm b$ regions (based on external inputs from <u>CLEO</u> and <u>BESIII</u>).

Mixing parameters in $\bar{B} \rightarrow D^0 (\rightarrow K_S^0 \pi^+ \pi^-) \mu^- \bar{\nu}_{\mu} X$

Summary of uncertainties

Source	x_{CP} [10 ⁻³]	$y_{C\!P}$ [10 ⁻³]	$\Delta x \ [10^{-3}]$	$\Delta y \ [10^{-3}]$
Reconstruction and selection	0.06	0.79	0.28	0.24
Detection asymmetry	0.06	0.03	0.01	0.09
Mass-fit model	0.03	0.09	0.01	0.01
Unrelated $D^0\mu$ combinations	0.24	0.22	0.01	0.05
Total systematic	0.26	0.83	0.28	0.26
Strong phase inputs	0.32	0.68	0.16	0.21
Statistical (w/o phase inputs)	1.45	3.04	0.92	1.91
Statistical	1.48	3.12	0.93	1.92

Uncertainty on external strong phase inputs higher than total systematic \rightarrow need for new BESIII inputs!

Compatible results for prompt & SL

New combinations on charm mixing

- With respect to last ones, improvement of y by 40% thanks to new $y_{CP} y_{CP}^{K\pi}$ result
- $\delta_D^{K\pi} \neq 180^\circ$ @ 3.6 $\sigma \rightarrow$ Evidence of U-spin symmetry breaking
 - External inputs including BESIII measurement on strong-phase difference [EPJC 82 (2022) 1009]

 $x = (0.398^{+0.050}_{-0.049})\%$ $y = (0.636^{+0.020}_{-0.019})\%$

New combinations on charm mixing

- With respect to last ones, improvement of y by 40% thanks to new $y_{CP} y_{CP}^{K\pi}$ result
- $\delta_D^{K\pi} \neq 180^\circ$ @ 3.6 $\sigma \rightarrow$ Evidence of U-spin symmetry breaking
 - External inputs including BESIII measurement on strong-phase difference [EPJC 82 (2022) 1009]

[arXiv:2208.03300, arXiv:2209.09840]

Amplitude analysis of $D_{(s)}^+ \rightarrow \pi^- \pi^+ \pi^+$

• 2012 data, $\mathcal{L} = 1.5 \text{ fb}^{-1}$. Promptly produced D mesons

- Competitive statistical power
- Methodology for amplitude construction
 - S-wave: Quasi-Model Independent approach (QMIPWA)

 $\mathcal{A}_{S}(s_{12}, s_{13}) = \mathcal{A}_{S}(s_{12}) + \mathcal{A}_{S}(s_{13}) \qquad \mathcal{A}_{S}^{k}(s_{\pi^{+}\pi^{-}}) = c_{k}e^{i\phi_{k}}$

- c_k, ϕ_k : Generic functions determined by fit to data
- Isobar model for spin-1, spin-2 components

Statistics >50x prior measurements from e⁺e⁻ experiments & higher signal purity (BABAR/CLEO-c/BESIII)

[arXiv:2208.03300, arXiv:2209.09840]

Amplitude analysis of $D_{(s)}^+ \rightarrow \pi^- \pi^+ \pi^+$

Component	Magnitude	Phase [°]		Fit fra	action [%	6]
$\rho(770)^{0}\pi^{+}$	1 [fixed]	0 [fixed]	26.0	± 0.3	± 1.6	± 0.3
$\omega(782)\pi^+$	$(1.68 \pm 0.06 \pm 0.15 \pm 0.02) \times 10^{-2}$	$-103.3 \pm 2.1 \pm 2.6 \pm 0.4$	0.10	3 ± 0.003	8 ± 0.01	4 ± 0.002
$\rho(1450)^0\pi^+$	$2.66 \pm 0.07 \pm 0.24 \pm 0.22$	$47.0 \pm 1.5 \pm 5.5 \pm 4.1$	5.4	± 0.4	± 1.3	± 0.8
$ ho(1700)^{0}\pi^{+}$	$7.41 \pm 0.18 \pm 0.47 \pm 0.71$	$-65.7 \pm 1.5 \pm 3.8 \pm 4.6$	5.7	± 0.5	± 1.0	± 1.0
$f_2(1270)\pi^+$	$2.16 \pm 0.02 \pm 0.10 \pm 0.02$	$-100.9 \pm 0.7 \pm 2.0 \pm 0.4$	13.8	± 0.2	± 0.4	± 0.2
S-wave			61.8	± 0.5	± 0.6	± 0.5
$\sum_{i} \mathrm{FF}_{i}$				1	12.8	
$\chi^2/ndof$ (range)	[1.47 - 1.78]			$-2\log L$	C = 8056	522

Dominated by S-wave, followed by $\rho(770)^0\pi^+$ and $f_2(1270)^0\pi^+$ Contribution from $(\omega(782) \rightarrow \pi^+\pi^-)\pi^+$ observed for the first time

Contribution from $(\omega(782) \rightarrow \pi^+\pi^-)\pi^+$ observed for the first time

14

[arXiv:2208.03300, arXiv:2209.09840]

[arXiv:2208.03262, accepted by PRD]

Prompt *π*, *K*, *p*

 Λ_{c}^{+} from b-hadron decays

Amplitude analysis of $\Lambda_c^+ \rightarrow pK^-\pi^+$

• 2016 data, $\mathcal{L} = 0.5 \text{ fb}^{-1}$; ~400k signals; helicity-based Am.An.

- All parameters of amplitude model reported
- Mass and width of $\Lambda(2000)$ determined

A(1405) - A(1520) - A(1600) - A(1670)
 Decay orientation angles in the lab system

- K' (700)

 $m = 1988 \pm 2 \pm 21 \,\text{MeV}$ $\Gamma = 179 \pm 4 \pm 16 \,\text{MeV}$

Λ_c^{+} polarization measurement

$$\underline{p(\Omega, \boldsymbol{P})} = \frac{1}{\mathcal{N}} \sum_{m_p = \pm 1/2} \left\{ (1 + P_z) |\mathcal{A}_{1/2, m_p}(\Omega)|^2 + (1 - P_z) |\mathcal{A}_{-1/2, m_p}(\Omega)|^2 \quad \Omega = (m_{pK^-}^2, m_{K^-\pi^+}^2, \cos \theta_p, \phi_p, \chi) \right\}$$

Final-state kinematics
$$+ 2 \operatorname{Re} \left[\left[P_x + i P_y \right] \mathcal{A}_{1/2, m_p}^*(\Omega) \mathcal{A}_{-1/2, m_p}(\Omega) \right] \right\}, \text{ of } \mathcal{A}_c^+$$

• Large interference improves sensitivity to initial polarization

 Λ_c^+ polarization from semileptonic *b*-decays measured, with 2 different definitions of initial spin axis

Model dependency contributes to the largest syst. uncertainty (second term)

Advances in High Energy Physics (2020) 7463073

Large interference between $\Delta(1232)^{++}$ and $K^*(892)$

Measured polarization *P* components

Component	Value (%)
P_x (lab)	$60.32 \pm 0.68 \pm 0.98 \pm 0.21$
P_y (lab)	$-0.41\pm0.61\pm0.16\pm0.07$
P_z (lab)	$-24.7 \pm 0.6 \pm 0.3 \pm 1.1$
$P_x(\tilde{B})$	$21.65 \pm 0.68 \pm 0.36 \pm 0.15$
$P_y(\tilde{B})$	$1.08\pm 0.61\pm 0.09\pm 0.08$
$P_z(\tilde{B})$	$-66.5 \pm 0.6 \pm 1.1 \pm 0.1$

[LHCb-PAPER-2022-044]

Polarimeter vector field of $\Lambda_c^+ \rightarrow pK^-\pi^+$

Important inputs for analyses involving Λ_{c^+} [Details]

[LHCb-PAPER-2022-029]

d, s, l

 γ, Z^0

Searching for $D^0 \rightarrow \mu^- \mu^+$

- FCNC & helicity suppression
- Predictions: $\mathcal{B}^{s.d.}(D^0 \to \mu^+ \mu^-) \sim 10^{-18}$ $\mathcal{B}^{(\gamma\gamma)}(D^0 \to \mu^+ \mu^-) < 2.3 \times 10^{-11}$
- Full Run1+2 analysis (9 fb⁻¹), D^0 from prompt $D^{*+} \rightarrow D^0 \pi^+_{tag}$
- Normalization channel: $\mathcal{B}(D^0 \to \mu^+ \mu^-) = \alpha N_{D^0 \to \mu^+ \mu^-}, \quad \alpha \sim \frac{\mathcal{B}(D^0 \to h^- \pi^+)}{N_{D^0 \to h^- \pi^+}} \frac{\varepsilon_{D^0 \to h^- \pi^+}}{\varepsilon_{D^0 \to \mu^+ \mu^-}} \sim 2 \times 10^{-11}$

 2D simultaneous fits in Candidates / (6.17 MeV/c² 250 Total $(0.114 \text{ MeV}/c^2)$ 250 Total LHCb LHCb $D^0 \rightarrow \mu^- \mu^+$ $D^0 \rightarrow \mu^- \mu^+$ 3 BDT bins per run: $6 \, \text{fb}^{-1}$ $6 \, \text{fb}^{-1}$ 200 Combinatorial --- Combinatorial 200 $D^0 \rightarrow \pi^- \pi^+$ $D^0 \rightarrow \pi^- \pi^+$ $0.666 \le BDT \le 1.0$ $0.666 \le BDT \le 1.0$ $\cdots D^0 \rightarrow K^- \pi^+$ $D^0 \rightarrow K^- \pi^+$ 150 Peaking mostly from Preliminary Preliminary π/μ misID 100 Candidates / 10050 50 1800 2000 2100 1900 Preliminary result: 140 145 150 $m(\mu^-\mu^+)$ [MeV/c²] $\Delta m [MeV/c^2]$

 $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 2.9(3.3) \times 10^{-9}$ at 90(95)% C.L. Improvement of more a factor of two!

Summary & outlook

- LHCb is in fact a charm factory and has the world's largest samples of charm hadronic decays
- High statistics and superb detector performance allow for high precision measurements on charm mixing & CP, amplitude analyses, rare decays, etc.
- Still more charm results in the pipeline with full Run1+2 data, stay tuned!
 - More CPV observables, dielectron modes, SL decays, radiative, etc.
- Longer term: Run3 has started
- Synergy with BESIII important for mixing & CPV in the charm sector

Figure 1: Sketch of a $D^0 \to K^- K^+$ to $D^0 \to K^- \pi^+$ matching.

$$|\bar{p}^*| = \frac{\sqrt{(m_{D^0}^2 - (m_{K^+} - m_{K^-})^2)(m_{D^0}^2 - (m_{K^+} + m_{K^-})^2}}{2m_{D^0}}$$

B decay	D decay	Ref.	Dataset	Status since
				Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$	[29]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	30]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	18	Run 1&2	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$	19	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	31]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K^0_S K^{\pm} \pi^{\mp}$	32	Run 1&2	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^+ h^-$	29	Run 1&2	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h^-$	[33]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[33]	Run $1\&2(*)$	As before
$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \rightarrow h^+ h^-$	34	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D \to h^+ h^-$	35]	Run $1\&2(*)$	As before
$B^0 \rightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	35]	Run $1\&2(*)$	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	36	Run 1	As before
$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[37]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	38]	Run 1	As before
$B^0_s \to D^{\mp}_s K^{\pm} \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	39]	Run 1&2	As before
D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. 14]
$D^0 \rightarrow h^+ h^-$	ΔA_{CP}	[24, 40, 41]	Run 1&2	As before
$D^0 \rightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	16, 24, 25	Run 2	\mathbf{New}
$D^0 \rightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^{-}\pi^{+}}$	42]	Run 1	As before
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^- \pi^+}$	15	Run 2	\mathbf{New}
$D^0 ightarrow h^+ h^-$	ΔY	43 - 46	Run 1&2	As before
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	47]	Run 1	As before
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	48	Run $1\&2(*)$	As before
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	49	Run 1	As before
$D^0 \rightarrow K^0_{ m S} \pi^+ \pi^-$	x, y	50	Run 1	As before
$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	51	Run 1	As before
$D^0 \rightarrow K^0_{ m S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	52]	Run 2	As before
$D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^- (\mu^- \text{tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	17	Run 2	New

[LHCb-CONF-2022-003]

Amplitude analysis of the $D^+ \rightarrow \pi^- \pi^+ \pi^+$ decay and measurement of the $\pi^- \pi^+$ S-wave amplitude

Figure 4: Models for (left) background distribution and (right) signal efficiency across the Dalitz plot, where the z-axis scale is arbitrary. x_{10^2}

Amplitude analysis of the $D_s^+ \to \pi^- \pi^+ \pi^+$ decay

Figure 4: (Left) efficiency variation over the Dalitz plot and (right) background model for $D_s^+ \rightarrow \pi^- \pi^+ \pi^+$ decays.

mode	this result	BaBar	BESIII
S-wave	84.97 ± 0.64	83.0 ± 2.1	84.2 ± 1.4
$ ho(770)^{0}\pi^{+}$	1.04 ± 0.12	1.8 ± 1.1	0.9 ± 0.8
$\omega(782)\pi^+$	0.360 ± 0.022	_	
$\rho(1450)^0\pi^+$	3.86 ± 2.0	2.3 ± 1.9	1.3 ± 0.8
$\rho(1700)^0\pi^+$	0.37 ± 0.34	_	
$f_2(1270)\pi^+$	13.60 ± 0.50	10.1 ± 1.9	10.5 ± 1.4
$f_2'(1525)\pi^+$	0.045 ± 0.011		

Λ_c^+ polarization frame

- Polarization measured in two Λ_c^+ helicity rest frames, with orthogonal components defined from the muon direction
- Laboratory frame: no reconstruction uncertainties
- Approximate B rest frame: closer to semileptonic decay physics

$$\hat{\boldsymbol{z}}_{\Lambda_{c}^{+}} = \hat{\boldsymbol{p}}(\Lambda_{c}^{+})$$

$$\hat{\boldsymbol{x}}_{\Lambda_{c}^{+}} = \frac{\boldsymbol{p}(\Lambda_{c}^{+}) \times \boldsymbol{p}(\mu^{-})}{|\boldsymbol{p}(\Lambda_{c}^{+}) \times \boldsymbol{p}(\mu^{-})|} \times \hat{\boldsymbol{p}}(\Lambda_{c}^{+})$$

$$\hat{\boldsymbol{y}}_{\Lambda_{c}^{+}} = \hat{\boldsymbol{z}}_{\Lambda_{c}^{+}} \times \hat{\boldsymbol{x}}_{\Lambda_{c}^{+}}$$

$$\hat{\boldsymbol{y}}_{\Lambda_{c}^{+}} = \hat{\boldsymbol{z}}_{\Lambda_{c}^{+}} \times \hat{\boldsymbol{x}}_{\Lambda_{c}^{+}}$$

$$\hat{\boldsymbol{y}}_{\Lambda_{c}^{+}} \equiv \hat{\boldsymbol{p}}(\Lambda_{c}^{+})$$

÷

- Longitudinal (P_z) and transverse (P_x) polarisation are T-even, while normal (P_y) polarisation is T-odd
- P_y can be produced only by T-violation or (EM) final state interactions, see Sozzi, Discrete symmetries and CPV

	Mode	Upgrade (50 $\mathrm{fb}^{-1})$	Upgrade II (300 $\mathrm{fb}^{-1})$
	$D^0 o \mu^+ \mu^-$	$4.2 imes10^{-10}$	$1.3 imes10^{-10}$
	$D^+ ightarrow \pi^+ \mu^+ \mu^-$	10^{-8}	$3 imes 10^{-9}$
Limits on BFs	$D^+_s ightarrow K^+ \mu^+ \mu^-$	10^{-8}	$3 imes 10^{-9}$
	$\Lambda_c^+ o p \mu^+ \mu^-$	$1.1 imes10^{-8}$	$4.4 imes10^{-9}$
	$D^0 o e \mu$	10^{-9}	$4.1 imes10^{-9}$
	$D^+ o \pi^+ \mu^+ \mu^-$	0.2%	0.08%
	$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	1%	0.4%
Stat. precision on asymmetries	$D^0 ightarrow \pi^+ K^- \mu^+ \mu^-$	0.3%	0.13%
	$D^0 ightarrow K^+ \pi^- \mu^+ \mu^-$	12%	5%
	$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	4%	1.7%