

SU(3) symmetry and its breaking effects in semileptonic heavy baryon decays

Fei Huang Shanghai Jiao Tong University

In collaboration with Xiao-Gang He, Wei Wang and Zhi-Peng Xing.

第十九届重味物理与CP破坏研讨会 2022-12-10

粒子与核物理研究所

> Introduction

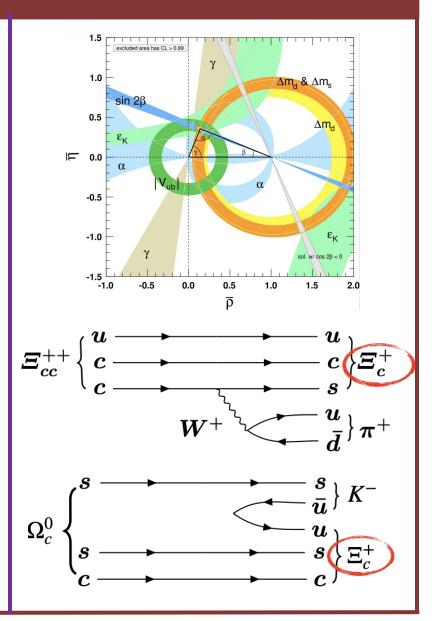
- SU(3) symmetry in semi-leptonic charm baryon decay
- SU(3) symmetry breaking in charm baryon decay

> Summary

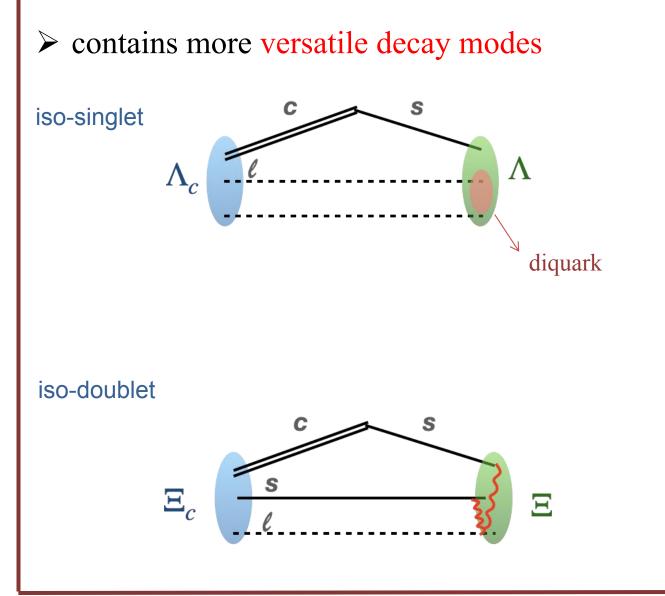
Introduction

- Precision CKM matrix elements;
- Charmed baryons semileptonic decays provide an ideal platform to study the strong and weak interactions.
- Important for the experimental researches of heavy baryons:
 - Studies of doubly-charmed baryon Ξ_{cc}^{++} decay
 - R. Aaij et al. [LHCb], PRL121, 162002 (2018)
 - Discovery of new exotic hadron candidates Ω_c

R. Aaij et al. [LHCb], PRL118, 182001 (2017)



Introduction



A different pattern between inclusive and exclusive decays of and D:

 $\frac{\mathscr{B}(\Lambda_c^+ \to X e^+ \nu_e) = (3.95 \pm 0.34 \pm 0.09)\,\%}{\mathscr{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.63 \pm 0.38 \pm 0.20)\,\%}$

$$\frac{\mathscr{B}(D^0 \to Xe^+\nu_e) = (6.49 \pm 0.11)\,\%}{\mathscr{B}(D^0 \to K/_e^+\nu_e) = (3.542 \pm 0.035)\,\%} \sim 2$$

M.Ablikim et al.[BESIII],PRL121,251801(2018)

Data on experiments

✓ Experimental

PHYSICAL REVIEW LETTERS 27 NOVEMBER 2015

Measurement of the Absolute Branching Fraction for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

BES-III; PRL 115,221805(2015)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PRL 115, 221805 (2015)

CERN-EP-2021-084 10 May 2021

Measurement of the cross sections of Ξ_c^0 and Ξ_c^+ baryons and of the branching-fraction ratio $BR(\Xi_c^0 \to \Xi^- e^+ \nu_e)/BR(\Xi_c^0 \to \Xi^- \pi^+)$ in pp collisions at $\sqrt{s} = 13$ TeV

ALICE Collaboration

PHYSICAL REVIEW LETTERS 127, 121803 (2021)

Measurements of the Branching Fractions of the Semileptonic Decays $\Xi_c^0 \to \Xi^- \mathscr{C}^+ \nu_{\mathscr{C}}$ and the Asymmetry Parameter of $\Xi_c^0 \to \Xi^- \pi^+$

Belle; PRL 127,121803(2021)

First observation of $\Lambda_c \rightarrow p\eta'$ JHEP 03(2022)090 First search for the weak radiative decays $\Lambda_c \rightarrow \Sigma^+ \gamma$ and $\Xi_c^0 \rightarrow \Xi^0 \gamma$ arXiv:2206.12517

 $R(\Lambda_c)=0.242 \pm 0.026 \pm 0.040 \pm 0.059$

 ✓ Quark Model: Light-Front Quark Model....
 ✓ QCD Sum rules(arxiv:2103.09436)
 ✓ Light-Cone Sum rules

✓ SU(3) symmetry

Cai-Dian L[°]), Wei Wang, Fu-Sheng Yu, PRD 93,056008 Xiao-Gang He, Yu-Ji Shi, Wei Wang, Eur. Phys.J.C 78,56 C.Q. Geng, Chia-Wei Liu, and Tien-Hsueh Tsia and Yao Yu, Phys.Rev.D 99(2019)11, 114022

✓ Lattice

 $\Lambda_c \rightarrow \Lambda l^+ \nu_l$ Form Factors and Decay Rates from Lattice QCD with Physical Quark Masses

Stefan Meinel Department of Physics, University of Arizona, Tucson, Arizona 85721, USA and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

Phys.Rev.Lett. 118 (2017) 8, 082001

First lattice QCD calculation of semileptonic decays of charmed-strange baryons Ξ_c^*

To cite this article: Qi-An Zhang et al 2022 Chinese Phys. C 46 011002

Chin Phys. C46 011002

PDG $\mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (1.8 \pm 1.2) \%$

Belle $\mathscr{B}\left(\Xi_c^0 \to \Xi^- e^+ \nu_e\right) = (1.31 \pm 0.04 \pm 0.07 \pm 0.38)\%$

ALICE $\mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (1.27 \pm 0.06 \pm 0.10 \pm 0.37) \%$

 $\mathcal{B}\left(\Xi_c^0 \to \Xi^- e^+ \nu_e\right) = (2.38 \pm 0.30 \pm 0.32 \pm 0.07)\%$ $\mathcal{B}\left(\Xi_c^0 \to \Xi^- e^+ \nu_e\right) = (2.29 \pm 0.29 \pm 0.30 \pm 0.06)\%$

SU(3) symmetry

SU(3) relations

• The low-energy effective Hamiltonian

$$(H_3)^1 = 0, \quad (H_3)^2 = V_{cd}^*, \quad (H_3)^3 = V_{cs}^*.$$

Amplitude:
$$H_{\lambda,\lambda_w} = a_1^{\lambda,\lambda_w} \times (T_{c\bar{3}})^{[ij]} (H_3)^k \epsilon_{ikm} (T_8)_j^m$$

$$a_{1}^{\lambda,\lambda_{w}}:SU(3) \text{ irreducible nonperturbative amplitude}$$

$$expand$$

$$\Lambda_{c}^{+} \rightarrow \Lambda^{0}\ell^{+}\nu_{\ell} \qquad -\sqrt{\frac{2}{3}}a_{1}^{\lambda,\lambda_{w}}V_{cs}^{*} \qquad \Xi_{c}^{+} \rightarrow \Xi^{0}\ell^{+}\nu_{\ell} \qquad -a_{1}^{\lambda,\lambda_{w}}V_{cs}^{*}$$

$$\Lambda_{c}^{+} \rightarrow n\ell^{+}\nu_{\ell} \qquad a_{1}^{\lambda,\lambda_{w}}V_{cd}^{*} \qquad \Xi_{c}^{0} \rightarrow \Sigma^{-}\ell^{+}\nu_{\ell} \qquad a_{1}^{\lambda,\lambda_{w}}V_{cd}^{*}$$

$$\Xi_{c}^{+} \rightarrow \Sigma^{0}\ell^{+}\nu_{\ell} \qquad -\frac{a_{1}^{\lambda,\lambda_{w}}V_{cd}^{*}}{\sqrt{2}} \qquad \Xi_{c}^{0} \rightarrow \Xi^{-}\ell^{+}\nu_{\ell} \qquad a_{1}^{\lambda,\lambda_{w}}V_{cs}^{*}$$

$$\Xi_{c}^{+} \rightarrow \Lambda^{0}\ell^{+}\nu_{\ell} \qquad -\frac{a_{1}^{\lambda,\lambda_{w}}V_{cd}^{*}}{\sqrt{6}}$$

$$\Gamma(\Xi_{c}^{0} \rightarrow \Xi^{-}\ell^{+}\nu_{\ell}) = \Gamma(\Xi_{c}^{+} \rightarrow \Xi^{0}\ell^{+}\nu_{\ell}) = \frac{3}{2}\Gamma(\Lambda_{c}^{+} \rightarrow \Lambda^{0}\ell^{+}\nu_{\ell})$$

$$\mathbf{U} = \mathbf{U} + \mathbf{U} +$$

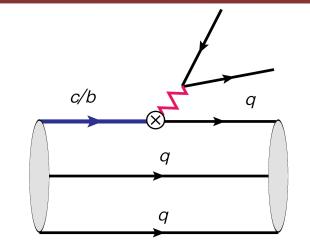
SU(3) symmetry

• Semileptonic charmed baryons decays

$$\Gamma(\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell) = \Gamma(\Xi_c^+ \to \Xi^0 \ell^+ \nu_\ell) = \frac{3}{2} \Gamma(\Lambda_c^+ \to \Lambda^0 \ell^+ \nu_\ell)$$

• The SU(3) predictions for Ξ_c decays

Channel	experiment data(%)	SU(3) symmetry(%)
$\Lambda_c \to \Lambda e^+ \nu_e$	$3.6 \pm 0.4 [1]$	3.6 ± 0.4
$\Lambda_c o \Lambda \mu^+ u_\mu$	$3.5\pm0.5[1]$	3.5 ± 0.5
$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	$7 \pm 4[1]$	12.7 ± 1.35
$\Xi_c^0 o \Xi^- e^+ \nu_e$	$1.54 \pm 0.35 [2,3]$	4.10 ± 0.46
$\Xi_c^0 o \Xi^- \mu^+ \nu_\mu$	$1.27 \pm 0.44[3]$	3.98 ± 0.57



[1]BES-III; PRL 115,221805(2015)
[2]Particle Data Group
[3]ALICE; arXiv:2105.05187
[4]Belle; PRL 127,121803(2021)

2σ standard deviation 6σ standard deviation 5σ standard deviation

Semileptonic anti-triplet charmed baryon decay

form factors

• Using helicity amlitude method, the amplitude

$$\mathcal{A}(B_c \to B_q \ell^+ \nu_\ell) = \frac{G_F}{\sqrt{2}} V_{cq}^* \langle B_q | \bar{q} \gamma^\mu (1 - \gamma_5) c | B_c \rangle (\ell^+ \nu_\ell | \bar{\nu}_\ell \gamma^\nu (1 - \gamma_5) \ell | 0 \rangle g_{\mu\nu} \langle H_{\lambda,\lambda_w} = \langle B_q | \bar{q} \gamma^\mu (1 - \gamma_5) c | B_c \rangle \epsilon^*_\mu (\lambda_w)$$

Defination:

$$a_1^{\lambda,\lambda_w} = \bar{u}(\lambda) \left[f_1 \gamma^{\mu} + f_2 \frac{i\sigma^{\nu\mu}}{M_i} q^{\nu} + f_3 \frac{q^{\mu}}{M_i} \right] u(\lambda_i) \epsilon_{\mu}^*(\lambda_w) - \bar{u}(\lambda) \left[f_1' \gamma^{\mu} + f_2' \frac{i\sigma^{\nu\mu}}{M_i} q^{\nu} + f_3' \frac{q^{\mu}}{M_i} \right] \gamma_5 u(\lambda_i) \epsilon_{\mu}^*(\lambda_w)$$

 $H_{\lambda,\lambda_w} = a_1^{\lambda,\lambda_w} \times (T_{c\bar{3}})^{[ij]} (H_3)^k \epsilon_{ikm} (T_8)_j^m,$

• Experimental and fit data

channel	branching ratio(%)		
Channel	experimental data	fit data	
$\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$	3.60 ± 0.40	1.94 ± 0.18	
$\int \Lambda_c^+ \to \Lambda^0 \mu^+ \nu_\mu$	3.5 ± 0.5	1.87 ± 0.176	
$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	7.0 ± 4.0	6.53 ± 0.60	
$\Xi_c^0 \to \Xi^- e^+ \nu_e$	1.54 ± 0.35	2.17 ± 0.20	
$\Xi_c^0 o \Xi^- \mu^+ u_\mu$	1.27 ± 0.44	2.09 ± 0.19	
$\chi^2/d.o.f=14.3$	$f_1 = 1.05 \pm 0.30$	$f_1' = 0.11 \pm 0.95$	
)		

SU(3) symmetry not good symmetry

SU(3) symmetry breaking

• Neglecting the masses of u and d quark, the mass Matrix can be written as:

$$M = \begin{pmatrix} m_u & 0 & 0 \\ 0 & m_d & 0 \\ 0 & 0 & m_s \end{pmatrix}$$

$$\sim m_s \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = m_s imes \omega.$$

Helicity amplitude

 $H_{\lambda,\lambda_W} = a_1^{\lambda,\lambda_w} \times (T_{c\bar{3}})^{[ij]} (H_3)^k \epsilon_{ikm} (T_8)_j^m \omega_n^j$ + $a_2^{\lambda,\lambda_w} \times (T_{c\bar{3}})^{[in]} (H_3)^k \epsilon_{ikm} (T_8)_j^m \omega_n^j$ + $a_3^{\lambda,\lambda_w} \times (T_{c\bar{3}})^{[in]} (H_3)^k \epsilon_{kjm} (T_8)_k^m \omega_n^j$ + $a_4^{\lambda,\lambda_w} \times (T_{c\bar{3}})^{[in]} (H_3)^k \epsilon_{jim} (T_8)_k^m \omega_n^j$ + $a_5^{\lambda,\lambda_w} \times (T_{c\bar{3}})^{[ij]} (H_3)^k \epsilon_{inm} (T_8)_j^m \omega_k^n$

Symmetry breaking term

SU(3) symmetry breaking in helicity amplitude

✓ Amplitude :

-	
channel	amplitude II
$\Lambda_c^+ o \Lambda^0 l^+ u$	$-\sqrt{rac{2}{3}}(a_1^{\lambda,\lambda_w}+a_5^{\lambda,\lambda_w})V_{ m cs}^*$
$\Lambda_c^+ ightarrow nl^+ u$	$a_1 V_{ m cd}^*$
$\Xi_c^+ \to \Sigma^0 \ell^+ \nu_\ell$	$\frac{(a_1^{\lambda,\lambda_w} + a_3^{\lambda,\lambda_w} - a_4^{\prime\lambda,\lambda_w})V_{\rm cd}^*}{\sqrt{2}}$
$\Xi_c^+ ightarrow \Lambda^0 \ell^+ u_\ell$	$\frac{\sqrt{2}}{-\frac{(a_1^{\lambda,\lambda_w}+2a_2^{\prime\lambda,\lambda_w}-a_3^{\lambda,\lambda_w}-a_4^{\prime\lambda,\lambda_w})V_{\rm cd}^*}{\sqrt{6}}}$
$\Xi_c^+ \to \Xi^0 \ell^+ \nu_\ell$	$\boxed{-(a_1^{\lambda,\lambda_w}+a_2^{\prime\lambda,\lambda_w}-a_4^{\prime\lambda,\lambda_w}+a_5^{\lambda,\lambda_w})V_{\rm cs}^*}$
$\Xi_c^0 \to \Sigma^- \ell^+ \nu_\ell$	$(a_1^{\lambda,\lambda_w}+a_3^{\lambda,\lambda_w}-a_4^{\prime\lambda,\lambda_w})V_{ m cd}^*$
$\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell$	$(a_1^{\lambda,\lambda_w}+a_2^{\prime\lambda,\lambda_w}-a_4^{\prime\lambda,\lambda_w}+a_5^{\lambda,\lambda_w})V_{ m cs}^*$
$a_1^{\lambda,\lambda_w} + a_5^{\lambda,\lambda}$	$\Phi^w = f_1(q^2) \times \bar{u}(\lambda) \gamma^\mu u(\lambda_i) \epsilon^*_\mu(\lambda_w)$
	$-f_1'(q^2) \times \bar{u}(\lambda)\gamma^{\mu}\gamma_5 u(\lambda_i)\epsilon^*_{\mu}(\lambda_w)$
	Heavy quark Limit

≻Constant

$$a_i^{\lambda,\lambda_w}(i=1,2,3,4,5) =$$
Constant

≻ Pole model

$$f_i(q^2) = \frac{f_i}{1 - \frac{q^2}{m_p^2}}$$

$$f_i = f_i(q^2 = 0)$$

 $m_p = 2.061$

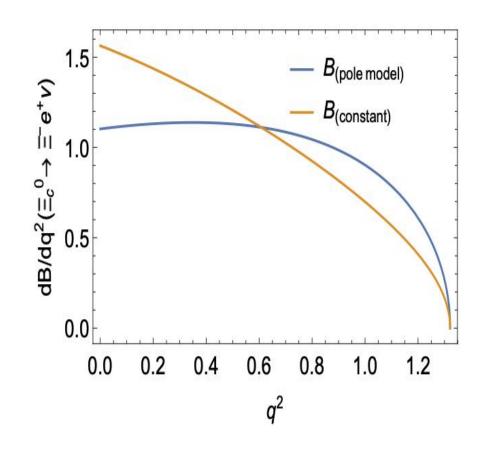
the average mass of D and Ds

SU(3) symmetry breaking in helicity amplitude

\checkmark Experimental data and fit results

channel	branching ratio(%)			
channel	experimental data	fit data(pole model)	fit data(constant).	
$\Lambda_c^+ o \Lambda^0 e^+ u_e$	3.6 ± 0.4	3.61 ± 0.32	3.62 ± 0.32	
$\Lambda_c^+ o \Lambda^0 \mu^+ u_\mu$	3.5 ± 0.5	3.48 ± 0.30	3.45 ± 0.30	
$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	7.0 ± 4.0	3.89 ± 0.73	3.92 ± 0.73	
$\Xi_c^0 \to \Xi^- e^+ \nu_e$	1.54 ± 0.35	1.29 ± 0.24	1.31 ± 0.24	
$\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu$	1.27 ± 0.44	1.24 ± 0.23	1.24 ± 0.23	
fit parameter	$f_1 = 1.01 \pm 0.87,$	$\delta f_1 = -0.51 \pm 0.92$	$\chi^2/d.o.f = 1.6$	
(pole model)	$f_1' = 0.60 \pm 0.49,$	$\delta f_1' = -0.23 \pm 0.41$	$\chi / u.o. f = 1.0$	
fit parameter	$f_1 = 0.86 \pm 0.92,$	$\delta f_1=-0.25\pm0.88$	$\chi^2/d.o.f=1.9$	
(constant)	$f_1' = 0.85 \pm 0.36,$	$\delta f_1' = -0.43 \pm 0.50$	χ / $u.0.j = 1.9$	

✓ Differential decay branching fraction



Symmetry breaking caused by the $\Xi_c^0 - \Xi_c^{\prime 0/+}$

$$\Xi_c^{0/+mass} = \cos\theta \times \Xi_c^{0/+} + \sin\theta \times \Xi_c^{0/+'}$$

$$\checkmark \text{ Helicity amp}$$

channel	amplitude
$\Sigma_c^{++} \to \Sigma^+ l^+ \nu$	$-\left(c_1^{\lambda,\lambda_w}+c_5^{\lambda,\lambda_w} ight)V_{\mathrm{cs}}^*$
$\Sigma_c^{++} \to p l^+ \nu$	$c_1^{\lambda,\lambda_w}V_{ m cd}^*$
$\Sigma_c^+ \to \Sigma^0 l^+ \nu$	$\left(c_1^{\lambda,\lambda_w}+c_5^{\lambda,\lambda_w} ight)V_{ m cs}^*$
$\Sigma_c^+ \to n l^+ \nu$	$rac{c_1 V_{ m cd}^*}{\sqrt{2}}$
$\Xi_c^{\prime +} \to \Sigma^0 l^+ \nu$	$-\frac{1}{2}\left(c_1^{\lambda,\lambda_w}-c_3^{\lambda,\lambda_w}+c_4^{\lambda,\lambda_w}\right)V_{\rm cd}^*$
$\Xi_c^{\prime +} \to \Lambda^0 l^+ \nu$	$\frac{\left(-3c_1^{\lambda,\lambda_w}-2c_2^{\lambda,\lambda_w}+c_3^{\lambda,\lambda_w}+c_4^{\lambda,\lambda_w}\right)V_{\rm cd}^*}{2\sqrt{3}}$
$\Xi_c^{\prime +} \rightarrow \Xi^0 l^+ \nu$	$-\frac{\frac{2\sqrt{3}}{\left(c_1^{\lambda,\lambda_w}+c_2^{\lambda,\lambda_w}-c_4^{\lambda,\lambda_w}+c_5^{\lambda,\lambda_w}\right)V_{\rm cs}^*}{\sqrt{2}}$
$\Xi_c^0 \to \Sigma^- l^+ \nu$	$\left(c_1^{\lambda,\lambda_w}+c_5^{\lambda,\lambda_w} ight)V_{ m cs}^*$
$\Xi_c^{\prime 0} \to \Sigma^- l^+ \nu$	$-\frac{\left(c_{1}^{\lambda,\lambda_{w}}-c_{3}^{\lambda,\lambda_{w}}+c_{4}^{\lambda,\lambda_{w}}\right)V_{\mathrm{cd}}^{*}}{\sqrt{2}}$
$\Xi_c^{\prime 0} \to \Xi^- l^+ \nu$	$\frac{\sqrt{2}}{\left(c_1^{\lambda,\lambda_w} + c_2^{\lambda,\lambda_w} - c_4^{\lambda,\lambda_w} + c_5^{\lambda,\lambda_w}\right)V_{\rm cs}^*} \sqrt{2}}$
$\Omega_c^0 \to \Xi^- l^+ \nu$	$-\left(c_1^{\lambda,\lambda_w}+c_2^{\lambda,\lambda_w}-c_3^{\lambda,\lambda_w}\right)V_{\rm cd}^*$

✓ Amplitude :

plitude

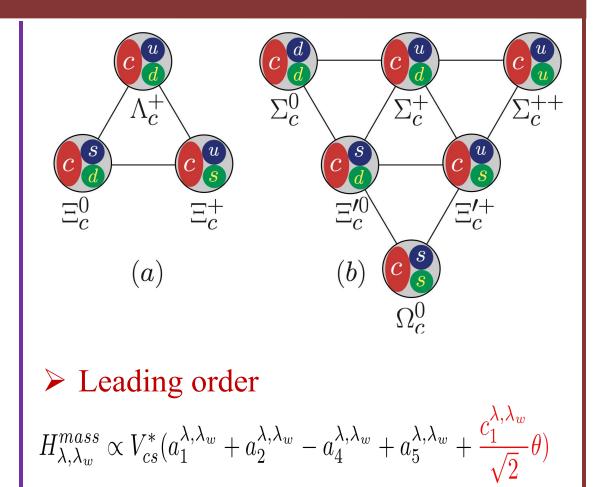
$$H_{\lambda,\lambda_W} = c_1^{\lambda,\lambda_w} \times (T_{c6})^{\{ij\}} (H_3)^k \epsilon_{ikm} (T_8)_j^m + c_2^{\lambda,\lambda_w} \times (T_{c6})^{\{in\}} (H_3)^k \epsilon_{ikm} (T_8)_j^m \omega_n^j + c_3^{\lambda,\lambda_w} \times (T_{c6})^{\{in\}} (H_3)^k \epsilon_{kjm} (T_8)_i^m \omega_n^j + c_4^{\lambda,\lambda_w} \times (T_{c6})^{\{in\}} (H_3)^k \epsilon_{jim} (T_8)_k^m \omega_n^j + c_5^{\lambda,\lambda_w} \times (T_{c6})^{[ij]} (H_3)^k \epsilon_{inm} (T_8)_j^m \omega_k^n$$

14

Symmetry breaking caused by the $\Xi_c^0 - \Xi_c^{\prime 0/+}$

channel amplitude I $-\sqrt{\frac{2}{3}(a_1^{\lambda,\lambda_w}+a_5^{\lambda,\lambda_w})V_{cs}^*}$ $\Lambda_c^+ \rightarrow \Lambda^0 l^+ \nu$ $\Lambda_c^+ \rightarrow n l^+ \nu$ $a_1 V_{ m cd}^*$ $(a_1^{\lambda,\lambda_w} + a_3^{\lambda,\lambda_w} - a_4^{\lambda,\lambda_w} - \frac{c_1^{\lambda,\lambda_w}}{\sqrt{2}}\theta)V_{\rm cd}^*$ $\Xi_c^+ \to \Sigma^0 \ell^+ \nu_\ell$ $\Xi_c^+ \to \Lambda^0 \ell^+ \nu_\ell \qquad - \frac{(a_1^{\lambda,\lambda_w} + 2a_2^{\lambda,\lambda_w} - a_3^{\lambda,\lambda_w} - a_4^{\lambda,\lambda_w} + \frac{3c_1^{\lambda,\lambda_w}}{\sqrt{2}}\theta)V_{\rm cd}^*}{2}$ $\Xi_c^+ \to \Xi^0 \ell^+ \nu_\ell \left| -(a_1^{\lambda,\lambda_w} + a_2^{\lambda,\lambda_w} - a_4^{\lambda,\lambda_w} + a_5^{\lambda,\lambda_w} + \frac{c_1^{\lambda,\lambda_w}}{\sqrt{2}} \theta) V_{\rm cs}^* \right|$ $\Xi_c^0 \to \Sigma^- \ell^+ \nu_\ell \qquad (a_1^{\lambda,\lambda_w} + a_3^{\lambda,\lambda_w} - a_4^{\lambda,\lambda_w} - \frac{c_1^{\lambda,\lambda_w}}{\sqrt{2}} \theta) V_{\rm cd}^*$ $\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell \left| (a_1^{\lambda,\lambda_w} + a_2^{\lambda,\lambda_w} - a_4^{\lambda,\lambda_w} + a_5^{\lambda,\lambda_w} + \frac{c_1^{\lambda,\lambda_w}}{\sqrt{2}} \theta) V_{cs}^* \right|$

✓ Amplitude for mass mixing :



Neglect the $O(m_s^2)$ and higher order corrections

Prediciton

✓ Amplitude :

channel	amplitude I	
$\Lambda_c^+ ightarrow \Lambda^0 l^+ u$	$-\sqrt{rac{2}{3}}(a_1^{\lambda,\lambda_w}+a_5^{\lambda,\lambda_w})V_{ m cs}^*$	
$\Lambda_c^+ \to n l^+ \nu$	$a_1 V_{ m cd}^*$	
$\Xi_c^+ \to \Sigma^0 \ell^+ \nu_\ell$	$\frac{(a_1^{\lambda,\lambda_w} + a_3^{\lambda,\lambda_w} - a_4^{\lambda,\lambda_w} - \frac{c_1^{\lambda,\lambda_w}}{\sqrt{2}}\theta)V_{\rm cd}^*}{\sqrt{2}}$	
$\Xi_c^+ o \Lambda^0 \ell^+ u_\ell$	$-\frac{(a_1^{\lambda,\lambda_w}+2a_2^{\lambda,\lambda_w}-a_3^{\lambda,\lambda_w}-a_4^{\lambda,\lambda_w}+\frac{3c_1^{\lambda,\lambda_w}}{\sqrt{2}}\theta)V_{\rm cd}^*}{\sqrt{6}}$	
$\Xi_c^+\to \Xi^0\ell^+\nu_\ell$	$-(a_1^{\lambda,\lambda_w}+a_2^{\lambda,\lambda_w}-a_4^{\lambda,\lambda_w}+a_5^{\lambda,\lambda_w}+rac{c_1^{\lambda,\lambda_w}}{\sqrt{2}} heta)V_{ m cs}^*$	
$\Xi_c^0\to \Sigma^-\ell^+\nu_\ell$	$(a_1^{\lambda,\lambda_w}+a_3^{\lambda,\lambda_w}-a_4^{\lambda,\lambda_w}-rac{c_1^{\lambda,\lambda_w}}{\sqrt{2}} heta)V_{ m cd}^*$	
$\Xi_c^0\to \Xi^-\ell^+\nu_\ell$	$(a_1^{\lambda,\lambda_w}+a_2^{\lambda,\lambda_w}-a_4^{\lambda,\lambda_w}+a_5^{\lambda,\lambda_w}+rac{c_1^{\lambda,\lambda_w}}{\sqrt{2}} heta)V_{ ext{cs}}^*$	

✓ Estimate :

$$\mathcal{B}(\Lambda_c^+ \to ne^+\nu_e) = (0.520 \pm 0.046)\%$$
$$\mathcal{B}(\Lambda_c^+ \to n\mu^+\mu_\nu) = (0.506 \pm 0.045)\%$$

Assuming a_5^{λ,λ_w} giving no contribution

Prediciton

✓ Amplitude :

channel	amplitude I
$\Lambda_c^+\to\Lambda^0 l^+\nu$	$-\sqrt{rac{2}{3}}(a_1^{\lambda,\lambda_w}+a_5^{\lambda,\lambda_w})V_{ m cs}^*$
$\Lambda_c^+ \to n l^+ \nu$	$a_1 V_{ m cd}^*$
$\Xi_c^+ \to \Sigma^0 \ell^+ \nu_\ell$	$\frac{(a_1^{\lambda,\lambda_w} + a_3^{\lambda,\lambda_w} - a_4^{\lambda,\lambda_w} - \frac{c_1^{\lambda,\lambda_w}}{\sqrt{2}}\theta)V_{\rm cd}^*}{\sqrt{2}}$
$\Xi_c^+ o \Lambda^0 \ell^+ u_\ell$	$-\frac{(a_1^{\lambda,\lambda_w}+2a_2^{\lambda,\lambda_w}-a_3^{\lambda,\lambda_w}-a_4^{\lambda,\lambda_w}+\frac{3c_1^{\lambda,\lambda_w}}{\sqrt{2}}\theta)V_{\rm cd}^*}{\sqrt{6}}$
$\Xi_c^+ \to \Xi^0 \ell^+ \nu_\ell$	$-(a_1^{\lambda,\lambda_w} + a_2^{\lambda,\lambda_w} - a_4^{\lambda,\lambda_w} + a_5^{\lambda,\lambda_w} + \frac{c_1^{\lambda,\lambda_w}}{\sqrt{2}}\theta)V_{\rm cs}^*$
$\Xi_c^0 \to \Sigma^- \ell^+ \nu_\ell$	A A
$\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell$	$(a_1^{\lambda,\lambda_w} + a_2^{\lambda,\lambda_w} - a_4^{\lambda,\lambda_w} + a_5^{\lambda,\lambda_w} + \frac{c_1^{\lambda,\lambda_w}}{\sqrt{2}}\theta)V_{\rm cs}^*$

✓ Estimate :

 $\mathcal{B}(\Xi_c^+ \to \Sigma^0 e^+ \nu_e) = (0.496 \pm 0.046)\%$ $\mathcal{B}(\Xi_c^+ \to \Sigma^0 \mu^+ \nu_\mu) = (0.481 \pm 0.044)\%$

 $\mathcal{B}(\Xi_c^+ \to \Lambda^0 e^+ \nu_e) = (0.067 \pm 0.013)\%$ $\mathcal{B}(\Xi_c^+ \to \Lambda^0 \mu^+ \nu_\mu) = (0.069 \pm 0.0213)\%$

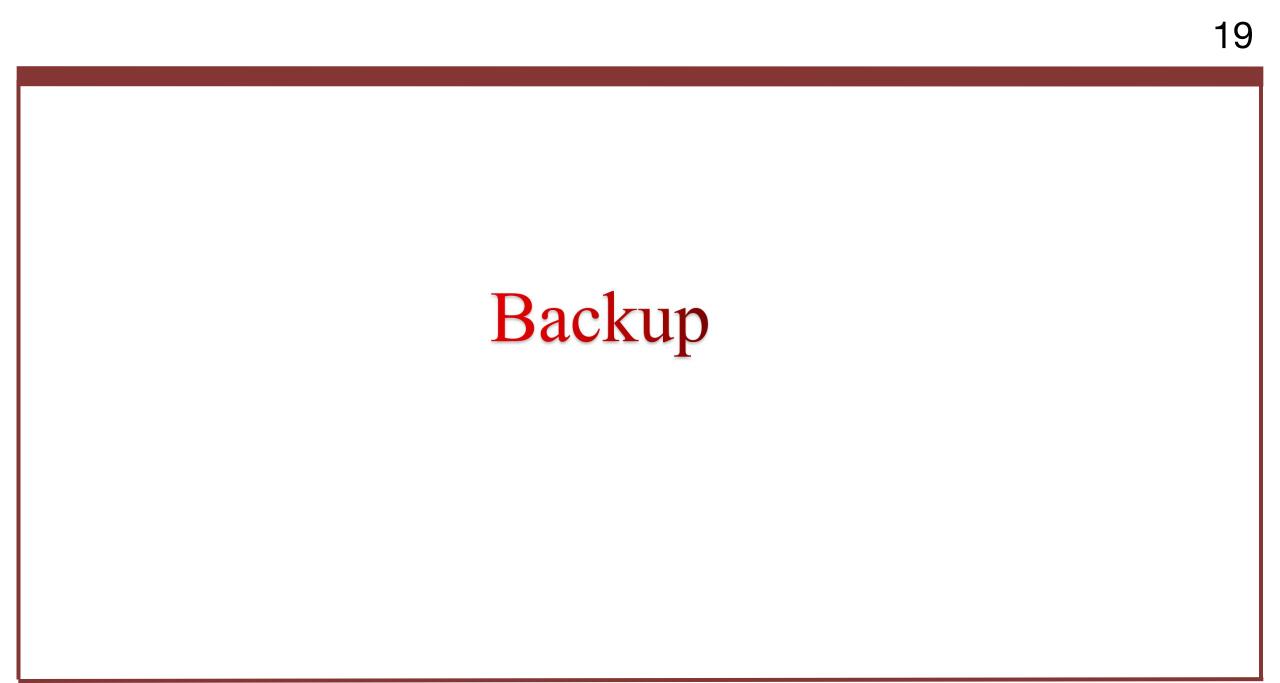
 $\mathcal{B}(\Xi_c^0 \to \Sigma^- e^+ \nu_e) = (0.333 \pm 0.031)\%$ $\mathcal{B}(\Xi_c^0 \to \Sigma^- \mu^+ \nu_\nu) = (0.323 \pm 0.029)\%$

Assuming $a_2^{\lambda,\lambda_w}, a_3^{\lambda,\lambda_w}, a_5^{\lambda,\lambda_w}$ giving no contribution

We have analyzed the latest data on charmed baryon decays, and found large deviations from SU(3) symmetry;

We obtain a reasonable description of all relevent data with SU(3) symmetry breaking effect;

As an estimation, we give the branching ratios for $\Lambda_c \to n\ell^+\nu_\ell, \Xi_c \to \Sigma^0\ell^+\nu_\ell, \Xi_c^+ \to \Lambda^0\ell^+\nu_\ell, \Xi_c^0 \to \Sigma^-\ell^+\nu_\ell$



backup

-	
channel	amplitude II
$\Lambda_c^+ o \Lambda^0 l^+ u$	$-\sqrt{rac{2}{3}}(a_1^{\lambda,\lambda_w}+a_5^{\lambda,\lambda_w})V^*_{ m cs}$
$\Lambda_c^+ ightarrow nl^+ u$	$a_1 V_{ m cd}^*$
$\Xi_c^+ \to \Sigma^0 \ell^+ \nu_\ell$	$\frac{(a_1^{\lambda,\lambda_w} + a_3^{\lambda,\lambda_w} - a_4^{\prime\lambda,\lambda_w})V_{\rm cd}^*}{\sqrt{2}}$
$\Xi_c^+ o \Lambda^0 \ell^+ u_\ell$	$\frac{\sqrt{2}}{-\frac{(a_1^{\lambda,\lambda_w}+2a_2^{\prime\lambda,\lambda_w}-a_3^{\lambda,\lambda_w}-a_4^{\prime\lambda,\lambda_w})V_{\rm cd}^*}{\sqrt{6}}}$
$\Xi_c^+ o \Xi^0 \ell^+ u_\ell$	$-(a_1^{\lambda,\lambda_w}+a_2^{\prime\lambda,\lambda_w}-a_4^{\prime\lambda,\lambda_w}+a_5^{\lambda,\lambda_w})V_{ m cs}^*$
$\Xi_c^0 \to \Sigma^- \ell^+ \nu_\ell$	$(a_1^{\lambda,\lambda_w}+a_3^{\lambda,\lambda_w}-a_4^{\prime\lambda,\lambda_w})V_{ m cd}^*$
$\Xi_c^0\to \Xi^-\ell^+\nu_\ell$	$(a_1^{\lambda,\lambda_w}+a_2^{\prime\lambda,\lambda_w}-a_4^{\prime\lambda,\lambda_w}+a_5^{\lambda,\lambda_w})V_{ m cs}^*$

$$a_1^{\lambda,\lambda_w} + a_5^{\lambda,\lambda_w} = f_1(q^2) \times \bar{u}(\lambda)\gamma^\mu u(\lambda_i)\epsilon_\mu^*(\lambda_w)$$
$$-f_1'(q^2) \times \bar{u}(\lambda)\gamma^\mu\gamma_5 u(\lambda_i)\epsilon_\mu^*(\lambda_w)$$

$$a_{2}^{\lambda,\lambda_{w}} - a_{4}^{\lambda,\lambda_{w}} = \delta f_{1}(q^{2}) \times \bar{u}(\lambda)\gamma^{\mu}u(\lambda_{i})\epsilon_{\mu}^{*}(\lambda_{w})$$
$$-\delta f_{1}'(q^{2}) \times \bar{u}(\lambda)\gamma^{\mu}\gamma_{5}u(\lambda_{i})\epsilon_{\mu}^{*}(\lambda_{w})$$

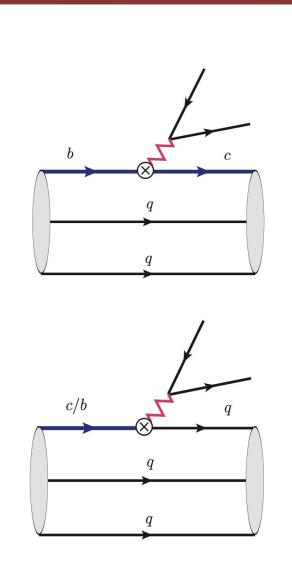
$$a_3^{\lambda,\lambda_w} = \Delta f_1(q^2) \times \bar{u}(\lambda)\gamma^{\mu}u(\lambda_i)\epsilon_{\mu}^*(\lambda_w)$$
$$-\Delta f_1'(q^2) \times \bar{u}(\lambda)\gamma^{\mu}\gamma_5 u(\lambda_i)\epsilon_{\mu}^*(\lambda_w)$$

SU(3) symmetry in anti-triplet beauty baryons

• Helicity amplitude in SU(3) analysis

$$H_{\lambda,\lambda_w} = b_1^{\lambda,\lambda_w} \times (T_{b\bar{3}})^{[ij]} (H'_3)^k \epsilon_{ikm} (T_8)_j^m + e_1^{\lambda,\lambda_w} \times (T_{b\bar{3}})^{[ij]} (T_{c\bar{3}})_{[ij]}$$

channel	amplitude	branching fraction (%)
$\Lambda_b^0 o p \ell^- ar{ u_\ell}$	b_1^{λ,λ_w}	$4.1 \pm 1.0(\mathrm{input})[1]$
$\Xi_b^0 \to \Sigma^+ \ell^- \bar{\nu_\ell}$	$-b_1^{\lambda,\lambda_w}$	4.1 ± 1.0
$\Xi_b^- \to \Sigma^0 \ell^- \bar{\nu_\ell}$	$rac{b_1^{\lambda,\lambda}w}{\sqrt{2}}$	2.2 ± 0.5
$\Xi_b^- \to \Lambda^0 \ell^- \bar{\nu_\ell}$	$rac{b_1^{\lambda,\lambda_w}}{\sqrt{6}}$	0.7 ± 0.2
$\Lambda_b^0 \to \Lambda_c^+ \ell^- \bar{\nu_\ell}$	$2e_1^{\lambda,\lambda_w}$	$6.2^{+1.4}_{-1.3}(\text{input})[2]$
$\Xi_b^0 \to \Xi_c^+ \ell^- \bar{\nu_\ell}$	$2e_1^{\lambda,\lambda_w}$	$6.2^{+1.4}_{-1.3}$
$\Xi_b^- \to \Xi_c^0 \ell^- \bar{\nu_\ell}$	$2e_1^{\lambda,\lambda_w}$	$6.6^{+1.5}_{-1.4}$



SU(3) symmetry breaking in anti-triplet beauty baryons

• Helicity amplitude in SU(3) analysis

channel	amplitude
$\Lambda_b^0 o p \ell^- ar{ u_\ell}$	b_1^{λ,λ_w}
$\Xi_b^0 \to \Sigma^+ \ell^- \bar{\nu_\ell}$	$-b_1^{\lambda,\lambda_w}+b_3^{\lambda,\lambda_w}-b_4^{\lambda,\lambda_w}$
$\Xi_b^- \to \Sigma^0 \ell^- \bar{\nu_\ell}$	$rac{b_1^{eta,ar{\lambda}_w}-b_3^{eta,ar{\lambda}_w}-b_4^{eta,ar{\lambda}_w}}{\sqrt{2}}$
$\Xi_b^- \to \Lambda^0 \ell^- \bar{\nu_\ell}$	$\frac{b_1^{\lambda,\lambda_w} + 2b_2^{\lambda,\lambda_w} + b_3^{\lambda,\lambda_w} - b_4^{\lambda,\lambda_w}}{\sqrt{6}}$
$\Lambda^0_b o \Lambda^+_c \ell^- ar{ u_\ell}$	$2e_1^{\lambda,\lambda_w}$
$\Xi_b^0 \to \Xi_c^+ \ell^- \bar{\nu_\ell}$	$2e_1^{\lambda,\lambda_w}+e_2^{\lambda,\lambda_w}$
$\Xi_b^- \to \Xi_c^0 \ell^- \bar{\nu_\ell}$	$2e_1^{\lambda,\lambda_w} + e_2^{\lambda,\lambda_w}$

 $\Gamma(\Xi_b^- \to \Sigma^0 \ell^- \bar{\nu_\ell}) = \frac{1}{2} \Gamma(\Xi_b^0 \to \Sigma^+ \ell^- \bar{\nu_\ell})$ $\Gamma(\Xi_b^0 \to \Xi_c^+ \ell^- \bar{\nu_\ell}) = \Gamma(\Xi_b^- \to \Xi_c^0 \ell^- \bar{\nu_\ell})$

Helicity amplitude

$$\begin{split} H_{\lambda,\lambda_{w}} &= b_{1}^{\lambda,\lambda_{w}} \times (T_{b\bar{3}})^{[ij]} (H'_{3})^{k} \epsilon_{ikm} (T_{8})_{j}^{m} \\ &+ b_{2}^{\lambda,\lambda_{w}} \times (T_{b\bar{3}})^{[in]} (H'_{3})^{k} \epsilon_{ikm} (T_{8})_{j}^{m} \omega_{n}^{j} \\ &+ b_{3}^{\lambda,\lambda_{w}} \times (T_{c\bar{3}})^{[in]} (H'_{3})^{k} \epsilon_{jkm} (T_{8})_{i}^{m} \omega_{n}^{j} \\ &+ b_{4}^{\lambda,\lambda_{w}} \times (T_{c\bar{3}})^{[in]} (H'_{3})^{k} \epsilon_{ikm} (T_{8})_{j}^{m} \omega_{n}^{j} \\ &+ b_{5}^{\lambda,\lambda_{w}} \times (T_{c\bar{3}})^{[ij]} (H'_{3})^{k} \epsilon_{inm} (T_{8})_{j}^{m} \omega_{k}^{n} \\ &+ e_{1}^{\lambda,\lambda_{w}} \times (T_{b\bar{3}})^{[ij]} (T_{c\bar{3}})_{[ij]} \\ &+ e_{2}^{\lambda,\lambda_{w}} \times (T_{b\bar{3}})^{[ij]} (T_{c\bar{3}})_{[kj]} \end{split}$$

Symmetry breaking term