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Glauber胶⼦的因⼦化与超级领头对数重求和



For inclusive observables, sensi0ve only to a single high-energy scale 
Q, we have
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power corrections

nonperturbative

partonic cross 
sections: 

perturbation theory

parton distribution 
functions (PDFs): 

nonperturbative

σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µf )〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

Collinear factoriza0on for inclusive observables



The right way to look at this formula is effec0ve theory
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RG
-e
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low-energy matrix 
elements


nonperturbative

Wilson coefficient: 
matching at μ ≈ Q 

perturbation theory

σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

power 
suppressed

operators



The matching coefficient         is independent of 
external states and insensi0ve to physics below the 
matching scale μ.  

Can use quark and gluon states to perform the 
matching. 

• Trivial matrix elements 

• Wilson coefficients are partonic cross sec0on 

• Bare Wilson coefficients have divergencies. 
Renormaliza0on induces dependence on μ. 
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σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

〈qa′(x′p)|Oa(x)|qa′(x′ p)〉 = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

〈qa′(x′p)|Oa(x)|qa′(x′ p)〉 = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Cab



Quite nontrivial that the low-energy matrix element factorizes into a 
product 

  

One should be worried about long-distance interac0ons mediated by soJ 
gluons
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σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

〈qa′(x′p)|Oa(x)|qa′(x′ p)〉 = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Glauber gluon 

standard so/ gluon

pµ ⇡ pµ?



All proton collisions include forward component (proton remnants) 

Absence of factoriza0on-viola0on due to Glauber gluons is important element 
of factoriza0on proof for Drell-Yan process. 
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All proton collisions include forward component (proton 
remnants). EFT for pp collisions must describe forward 
scattering. 

• EFT should include Glauber-gluons. 

• Absence of factorization-violation due to 
Glauber gluons is important element of 
factorization proof for Drell-Yan process.
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Glauber Exchange 
violates factorization: 122
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FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (312). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

As we will see below once the hard scattering is taken into account the Glaubers no longer

eikonalize. However, despite this fact, an overall phase will still be generated if we sum over

Glauber exchange rungs (ignoring soft and collinear radiation).

We will also show under what circumstances the phase cancels. Of course this cancellation

is a necessary TODO:

Check

(TODO) but not su�cient condition for a proof of factorization. Since there are

quantum corrections which break factorization that are not pure phases. A demonstration of how

complete proofs of factorization can be carried out using our Glauber theory will be given elsewhere.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with M
DIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with M
DY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S
�
i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(313)

= S
�


1

~p 2
1?

1

~p 2
2?

� 
n̄ · p1 n̄ · (P�p1)

n̄ · P

n · p2 n · (P̄�p2)

n · P̄

�

⌘ S� E(p1?, p2?),

couples n-collinear,
n-collinear, and 

soft modes

Glauber’s dominate 
Forward Scattering:
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2
?
= �~q 2

?
< 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h
ūn

n̄/

2
TBun

ih
�8⇡↵s(µ)�BC

~q 2
?

ih
v̄n̄

n/

2
TCvn̄

i
, (28)

i
h
ifBA3A2gµ2µ3

?
n̄ · p2

ih
�8⇡↵s(µ)�BC

~q 2
?

ih
v̄n̄

n/

2
TCvn̄

i
,

i
h
ūn

n̄/

2
TBun

ih
�8⇡↵s(µ)�BC

~q 2
?

ih
ifCA4A1gµ1µ4

?
n · p1

i
,

i
h
ifBA3A2gµ2µ3

?
n̄ · p2

ih
�8⇡↵s(µ)�BC

~q 2
?

ih
ifCA4A1gµ1µ4

?
n · p1

i
.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
?

factors, so we adopt the

n n

ss

fwd. scattering

fwd. scattering

n-n̄

n-s

(small-x logs,  reggeization, BFKL,
BK/BJMWLK, …)

Glauber

Bodwin ’85; Collins, Soper, Sterman ’85 ’88 …

[15] to discuss scattering at high energy and small angles.
The eikonalization indicates that substantial simplifica-
tions are possible. But that situation would go well beyond
normal factorization.

V. DISCUSSION

We should first emphasize that there is a large overlap
between the present paper and the work in Refs. [1– 4].
What is not so clear from the earlier work is whether
factorization in any standard sense continues to hold in
the process (1.1). For example, in [1], we read ‘‘We have
assumed factorization to hold in this treatment of TMD
effects although it is, at the present, certainly not clear
whether such a factorization holds for hadron-hadron scat-
tering processes with explicitly TMD correlators.’’

Our primary result is to show by a counterexample that
hard-scattering kT factorization with universal parton den-
sities fails for the production of high pT hadrons in hadron-
hadron collisions, when a pair of measured hadrons is close
to back-to-back azimuthally. The overall issue is that in a
gauge theory arbitrary exchanges of gauge fields between
different collinear groups (‘‘jets’’) can occur without any
power suppression. To obtain factorization it is necessary
to show that the sum over these exchanges can be absorbed
into the definitions of the parton densities and fragmenta-
tion functions, assisted by certain cancellations. A full
proof will be quite general, applying to a general gauge
theory and to many reactions. So one particular counter-
example is sufficient to show that such a proof does not
exist; we can then choose the counterexample for maxi-
mum clarity and simplicity.

Even for those cases where factorization does hold, the
need to make suitable definitions of the parton densities,
etc., so as to absorb the effects of the gluon exchanges
indicates that the parton densities, etc., can always be
regarded as effective densities [16]. The primary practical
issue is whether they are universal, i.e., the same for all
reactions. In a certain sense, the well-known scale depen-
dence of the densities is a kind of nonuniversality: different
parton densities are needed when the scale of the hard
scattering is given a large increment. But there is an
evolution equation for the scale dependence, and this ap-
plies to an individual parton density. No details or specifi-
cation of the hard scattering is needed to treat the evolution
equation, either to derive it or to apply it. We should
therefore refer in this case to ‘‘modified universality,’’ not
to nonuniversality. Similarly the reversal of the sign of the
Sivers function between SIDIS and DY processes is a case
of modified universality.

At the upper end of the exchanged gluon in our counter-
example, the interactions can be treated in the eikonal
approximation. This is very similar to other discussions
of partons passing through the gluon field of another
hadron. A selection of relevant papers is [15,17–19].
Much of that work concerns the small x region, diffractive

scattering, etc., whereas our counterexample applies in the
fully conventional region where normal parton-model con-
cepts are generally considered as fully applicable, i.e.,
parton fractional momenta are moderate and the scale of
the hard scattering is comparable to the center-of-mass
energy rather than being much less.

Of course, interesting simplifications do occur, so that
useful quantitative estimates can surely be obtained for the
nonfactorizing effects. However the methods are rather
different than those for conventional factorization.
References [15,17–19] indicate that the effects of the
eikonalized interactions are substantial, so that the numeri-
cal effects of nonfactorization should be significant; in the
present paper we did not estimate the numerical size of the
nonfactorization.

The gluon exchanges in our counterexample are clearly
tied to the target hadron at their lower end. But the coupling
at the upper end concerns some parton other than the one
coming out of the lower hadron. The noncanceling terms
are sufficiently tied to the color flow at the hard interaction
that they are not universal in any normal sense. This is the
clearest indication of nonuniversality.

The reader should not be misled by specific features of
our counterexample into supposing that the failure of
factorization is correspondingly restricted. These features
include: the use of an SSA, the particular features of the
model, and the particular order of perturbation theory. The
use of the SSA is simply a way of getting the maximal
conceptual sensitivity to problems in constructing a proof
of factorization. For an unpolarized cross section, we
would need an extra gluon to be exchanged in order for
the nonfactorization issues to arise, from graphs such as
those in Fig. 8. Evidently, to demonstrate nonfactorization
explicitly in this case, the number of graphs would be
larger than in our example, and the explicit calculations
would be much more lengthy. Standard power-counting
arguments show that the contribution of this and related
graphs is of leading power. It is very important to deter-

FIG. 8 (color online). The exchange of two extra gluons, as in
this graph, will tend to give nonfactorization in unpolarized cross
sections.

kT FACTORIZATION IS VIOLATED IN PRODUCTION . . . PHYSICAL REVIEW D 75, 114014 (2007)

114014-7

Rogers, Mulders `10

different graphs depending on whether the interaction is in
the initial or final state.

So, we will only consider graphs that can yield contri-
butions from the Glauber region. Since real gluons can
never be in the Glauber region, we will only consider
graphs with virtual gluons. Also, as long as no restrictions
are placed on the target remnant momenta, graphs with
spectator-spectator interactions cancel [5] in the integra-
tion over final states [28]. Similar cancellations occur
between different cuts of the same graph for active-
spectator interactions after parton transverse momentum
is integrated over, and are needed in the standard proofs of
collinear factorization [5]. A counter-proof of TMD-
factorizaton therefore needs to show that such cancella-
tions generally fail when transverse parton momentum is
explicitly taken into account. A specific example of such a
noncancellation was given in Ref. [18] and will be re-
viewed in Sec. IV. In graphs with attachments between
active quarks, there are not enough Dirac !-matrices to
give spin dependence to the TMD PDFs. Such graphs will
therefore not affect our discussion of single and double
spin asymmetries at lowest nonvanishing order.
Furthermore, graphs with a scalar-scalar-gluon-gluon ver-
tex do not give leading power contributions to eikonal
factors.

We remark that, because the TMD factorization break-
ing effects are due to the Glauber region where all compo-
nents of gluon momentum are small, the interactions
responsible for breaking TMD factorization are associated
with large distance scales.

In our specific model, a large number of graphs vanish
simply because of the highly simple color structure in-
volved. Examples are shown in Fig. 2. They vanish because
their color factors include a trace around a color loop of a
single SUðNcÞ generator, TrC½ta$ ¼ 0. (The C on the
TrC½& & &$ denotes a trace over triplet color indices.)

Hence, the relevant types of graphs are represented by
Figs. 3–8. If a generalized TMD-factorization formula is
possible, then the sum over all such graphs must produce a
factorized form like Eq. (3) with a Wilson line structure in
the TMD PDF or FF for each hadron separately. We will
consider each type of graph in the following sections.

III. ONE EXTRA GLUON

We begin the investigation of diagrams by reviewing the
steps for determining the contribution from a single extra
gluon. As in Ref. [17], we focus on the calculation of an
SSA. We start with graphs of the type shown in Fig. 3,
where the extra gluon attaches on the side of the hard part
nearest to its parent hadron. Any spin asymmetry disap-
pears in the zeroth order cross section, Fig. 1 because there
are too few Dirac matrices to produce a nonzero result in
the traces with !5.
Consider, for example, Fig. 3(a). The arrow on the gluon

line indicates that it is collinear to H1. By first deforming
the l integral out of the Glauber region to the H1-collinear
region, one may replace the intermediate struck quark line
of momentum k3 ' l by the eikonal factor

tagn"1
'lþ þ i#

¼ 'gtan"1 P:V:
1

lþ
' igtan"1 $%ðlþÞ; (8)

where n"1 ) ð0; 1; 0tÞ. The sign on the i# is determined by
the direction of the contour deformation. For the spin-
dependent part, the attachment of the extra gluon at the
spectator produces a factor at leading power equal to

ta

2
TrD½ð 6p1 þmH1

Þ!5s1ð 6p1 ' 6k1 þ 6 lþmc 1
Þ

* !þð 6p1 ' 6k1 þmc 1
Þ$

+ 2ita#jks
j
1l

kpþðmH1
ð1' x1Þ þmc 1

Þ: (9)

When this expression is combined with the imaginary part
of Eq. (8), the factors of 'i and i combine and a contri-
bution to an SSA is obtained. The #jk is the two-
dimensional Levi-Civita symbol with #12 ¼ 1.
If the extra gluon is on the other side of the cut as in

Fig. 3(b), the eikonal factor is

tagn"1
'lþ ' i#

¼ 'gtan"1 P:V:
1

lþ
þ igtan"1 $%ðlþÞ: (10)

The factor from the attachment at the spectator is,

FIG. 2. Typical cases of graphs that vanish when extra gluons are considered because of the trivial color factor, TrC½ta$ ¼ 0.

TED C. ROGERS AND PIET J. MULDERS PHYSICAL REVIEW D 81, 094006 (2010)

094006-6

e.g. TMD factoriza0on is violated in di-jet/di-hadron produc0on
Collins, Qiu `07; Collins `07, Vogelsang, Yuan `07; Rogers, Mulders `10, …



Dijet events with large rapidity gap at the LHC

None of the DGLAP-based Monte Carlo 
generators using LO or NLO calcula0ons can 
provide a complete descrip0on of all 
measured cross sec0ons and their ra0os

2111.04605



• Such events was originally suggested on the basis of color flow considera0ons in QCD Bjorken 
’93 

• Global Logs resumma0on is first done by Oderda & Sterman ’98 

• Forshaw, Kyrieleis, Seymour ’06 have analyzed the effect of Glauber phases in non-global 
observables directly in QCD 

• Collinear logarithms star0ng at 4 loops: Super-leading logs 

• Even 15 years aJer this effect was discovered, leading order resumma0on is unknown, process 
dependence is unknown,  

• At forth order there are 1,746,272 diagrams !!! 

• We apply renormaliza0on-group approach and obtain the all-order results of leading SLLs 
Becher, Neubert, DYS ’21 PRL
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Central jet veto at the LHC

e+e�, ep : ↵n
s lnn

✓
Q

Q0

◆

<latexit sha1_base64="kBugUguAtnCkRmtBLSmdoHJIrGg="></latexit>

pp : · · · + ↵3
s(i⇡)

2 ln3
✓

Q

Q0

◆
⇥ ↵n

s ln2n
✓

Q

Q0

◆

<latexit sha1_base64="zsCmUajNCltycLW0LBoeqSjHb2I="></latexit>

leading logs:

<latexit sha1_base64="vzIDrY8PqKUjFo1B4X31j3CCHcA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rFF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZ6aPTdfqnsVtw5yCrxclKGHPV+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbuqVBuX5dptHkcBTuEMLsCDa6jBPdShCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gDQ/Y1/</latexit>

Q0

<latexit sha1_base64="MUBbrCMFnxl9SdCTfAY8dJWNVT4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZrNfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqu15kWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8frWeM3A==</latexit>

Q
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All-order results of leading Super-Leading Logs

Sudakov suppression of the superleading 
logarithms is weaker than the one present 
for global observables 

<latexit sha1_base64="6SNxqNWcEOa5HOflCWLHNHdfgEU=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBC8GHaDqMegF48RzAOSNcxOepMh81hmZoWw5DO8eFDEq1/jzb9xkuxBEwsaiqpuuruihDNjff/bW1ldW9/YLGwVt3d29/ZLB4dNo1JNoUEVV7odEQOcSWhYZjm0Ew1ERBxa0eh26reeQBum5IMdJxAKMpAsZpRYJ3XgMTvvKgEDMumVyn7FnwEvkyAnZZSj3it9dfuKpgKkpZwY0wn8xIYZ0ZZRDpNiNzWQEDoiA+g4KokAE2azkyf41Cl9HCvtSlo8U39PZEQYMxaR6xTEDs2iNxX/8zqpja/DjMkktSDpfFGccmwVnv6P+0wDtXzsCKGauVsxHRJNqHUpFV0IweLLy6RZrQSXler9Rbl2k8dRQMfoBJ2hAF2hGrpDddRAFCn0jF7Rm2e9F+/d+5i3rnj5zBH6A+/zBz3JkTw=</latexit>

e�!Global logs

<latexit sha1_base64="Y2G8LlyIVVI7urAqZIkKvDv2Pw8=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiRF1GXRjcsK9gFNKJPppB06jzAzUULsp7hxoYhbv8Sdf+O0zUJbD1w4nHMv994TJYxq43nfTmltfWNzq7xd2dnd2z9wq4cdLVOFSRtLJlUvQpowKkjbUMNIL1EE8YiRbjS5mfndB6I0leLeZAkJORoJGlOMjJUGbjWQnIwQDIyEARWxyQZuzat7c8BV4hekBgq0Bu5XMJQ45UQYzJDWfd9LTJgjZShmZFoJUk0ShCdoRPqWCsSJDvP56VN4apUhjKWyJQycq78ncsS1znhkOzkyY73szcT/vH5q4qswpyJJDRF4sShOGbR/znKAQ6oINiyzBGFF7a0Qj5FC2Ni0KjYEf/nlVdJp1P2LeuPuvNa8LuIog2NwAs6ADy5BE9yCFmgDDB7BM3gFb86T8+K8Ox+L1pJTzByBP3A+fwDlWJPG</latexit>

! ! 1
<latexit sha1_base64="+GP7jdNjlOze6KDBpBHquIuP1Ac=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKqMeiF48V7Ac0oWy2k3bp7ibsbgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZQ2Nre2d8q7lb39g8Mj9/ikrZNMUWjRhCeqGxENnEloGWY4dFMFREQcOtH4fu53JqA0S+STmaYQCjKULGaUGCv1XTeIFaG5P8uDRMCQzPpu1at5C+B14hekigo0++5XMEhoJkAayonWPd9LTZgTZRjlMKsEmYaU0DEZQs9SSQToMF9cPsMXVhngOFG2pMEL9fdEToTWUxHZTkHMSK96c/E/r5eZ+DbMmUwzA5IuF8UZxybB8xjwgCmghk8tIVQxeyumI2KjMDasig3BX315nbTrNf+6Vn+8qjbuijjK6Aydo0vkoxvUQA+oiVqIogl6Rq/ozcmdF+fd+Vi2lpxi5hT9gfP5A9wRk9A=</latexit>

1

!
Superleading logs

Numerical results

Red: Four loop      Blue: Five loop      Black: all order

(Becher, Neubert, DYS ’21 PRL + ’22 in progress)

All-order structure: Kampe de Feriet func0on (a two-variable generaliza0on of 
the generalized hypergeometric series,  the general sex0c equa0on can be 
solved in terms of it)
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Summary and outlook
• Factoriza0on is at the heart of any quan0ta0ve predic0on using pQCD  

• We inves0gate naive factoriza0on viola0on effects using the gap frac0on 
of QCD jets at hadron colliders 

• The results are obtained by solving renormaliza0on group equa0ons order-
by-order  

• Subleading superleading logs? 

• Low energy theory from Glauber gluons ? 

• Non-perturba0ve correc0ons?

Thank you


