

Molecular state interpretation of charmed baryons in the quark model

全国第十九届重味物理和 CP 破坏研讨会 9-11 Dec. 2022. NanJing

I Introduction II Framework III Results IV Summary

I Introduction

Experiments:

- Λ⁺_c first observed by Fermilab in 1976
 [B. Knapp, W. Y. Lee, P. Leung, S. D. Smith, A. Wijangco, J. Knauer,
 D. Yount, J. Bronstein, R. Coleman and G. Gladding, et al. Phys. Rev. Lett. 37, 882 (1976)]
 - $\Lambda_c(2595) \ \Lambda_c(2625) \ \Lambda_c(2940) \ \Sigma_c(2800) \ \Xi_c(2645) \ \Xi_c(3080) \ \Omega_c(2770) \ \dots$

keep being enriched step by step with the help of experimental collaborations [P. A. Zyla et al. [Particle Data Group], PTEP 2020, 083C01 (2020).]

Motivation

$\Lambda_c(2910)^+$:

A new structure was found in the $M_{\Sigma_c(2455)^{0,++}\pi^{\pm}}$ spectrum with a significance of 4.2 σ including systematic uncertainty, which is tentatively named $\Lambda_c(2910)^+$. Its mass and width are measured to be $(2913.8\pm5.6\pm3.8)$ MeV/ c^2 and $(51.8\pm20.0\pm18.8)$ MeV, respectively.

[Belle], [arXiv:2206.08822 [hep-ex]].

Various theoretical studies on the $\Lambda_c(2910)^+$:

- light-cone QCD sum rule: a 2P state with $J^P = 1/2^-$ [K. Azizi et al., Eur. Phys. J. C 82, 920 (2022)]
- chiral quark model: $J^P = 5/2^-$ state $\Lambda_c \left| J^P = \frac{5}{2}^-, 2 \right\rangle_{\rho}$ [W. J. Wang et al., Phys. Rev. D 106, 074020(2022)]
- unquenched picture: contain a significant D*N component, prefers 3/2⁻
 [Z. L. Zhang et al., [arXiv:2210.17188 [hep-ph]].]

II Framework

Quark delocalization color screening model

$$H = \sum_{i=1}^{5} \left(m_i + \frac{p_i^2}{2m_i} \right) - T_{CM} + \sum_{j>i=1}^{5} V(r_{ij})$$
$$V(r_{ij}) = \frac{V_{CON}(r_{ij})}{1} + \frac{V_{OGE}(r_{ij})}{2} + \frac{V_{\chi}(r_{ij})}{3}$$

The most relevant features of QCD at its low energy regime:

(1) color confinement (V_{CON}),

(2) perturbative one-gluon exchange interaction (Voge),

(3) dynamical chiral symmetry breaking (V_{χ}) have been taken into consideration.

The quark delocalization effect:

$$\psi_{\alpha}(\mathbf{S}_{i},\epsilon) = \left(\phi_{\alpha}(\mathbf{S}_{i}) + \epsilon\phi_{\alpha}(-\mathbf{S}_{i})\right)/N(\epsilon),$$

$$\psi_{\beta}(-\mathbf{S}_{i},\epsilon) = \left(\phi_{\beta}(-\mathbf{S}_{i}) + \epsilon\phi_{\beta}(\mathbf{S}_{i})\right)/N(\epsilon),$$

$$N(\epsilon) = \sqrt{1 + \epsilon^{2} + 2\epsilon e^{-S_{i}^{2}/4b^{2}}}.$$

$$(1) \quad V_{CON}(\boldsymbol{r}_{ij}) = -a_c \boldsymbol{\lambda}_i^c \cdot \boldsymbol{\lambda}_j^c \left[f(\boldsymbol{r}_{ij}) + V_0 \right]$$

$$f(\boldsymbol{r}_{ij}) = \begin{cases} \boldsymbol{r}_{ij}^2 & i, j \text{ occur in the same cluster} \\ \frac{1-e^{-\mu_{q_iq_j}}\boldsymbol{r}_{ij}^2}{\mu_{q_iq_j}} & i, j \text{ occur in different cluster} \end{cases}$$

$$(2) \quad V_{OGE}(\boldsymbol{r}_{ij}) = \frac{1}{4} \alpha_s \boldsymbol{\lambda}_i^c \cdot \boldsymbol{\lambda}_j^c \left[\frac{1}{r_{ij}} - \frac{\pi}{2} \delta\left(\mathbf{r}_{ij}\right) \left(\frac{1}{m_i^2} + \frac{1}{m_j^2} + \frac{4\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j}{3m_i m_j} \right) \right]$$

$$\begin{aligned} \Im \quad V_{\chi}(\boldsymbol{r}_{ij}) = &V_{\pi}(\boldsymbol{r}_{ij}) + V_{K}(\boldsymbol{r}_{ij}) + V_{\eta}(\boldsymbol{r}_{ij}) \\ &V_{\pi}\left(\boldsymbol{r}_{ij}\right) = \frac{g_{ch}^{2}}{4\pi} \frac{m_{\pi}^{2}}{12m_{i}m_{j}} \frac{\Lambda_{\pi}^{2} m_{\pi}}{\Lambda_{\pi}^{2} - m_{\pi}^{2}} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \left[Y(m_{\pi} r_{ij}) - \frac{\Lambda_{\pi}^{3}}{m_{\pi}^{3}} Y(\Lambda_{\pi} r_{ij}) \right] \sum_{a=1}^{3} \lambda_{i}^{a} \lambda_{j}^{a}, \\ &V_{K}\left(\boldsymbol{r}_{ij}\right) = \frac{g_{ch}^{2}}{4\pi} \frac{m_{K}^{2}}{12m_{i}m_{j}} \frac{\Lambda_{K}^{2} m_{K}}{\Lambda_{K}^{2} - m_{K}^{2}} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \left[Y(m_{K} r_{ij}) - \frac{\Lambda_{K}^{3}}{m_{K}^{3}} Y(\Lambda_{K} r_{ij}) \right] \sum_{a=4}^{7} \lambda_{i}^{a} \lambda_{j}^{a} \\ &V_{\eta}\left(\boldsymbol{r}_{ij}\right) = \frac{g_{ch}^{2}}{4\pi} \frac{m_{\eta}^{2}}{12m_{i}m_{j}} \frac{\Lambda_{\eta}^{2}}{\Lambda_{\eta}^{2} - m_{\eta}^{2}} m_{\eta} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \left[Y(m_{\eta} r_{ij}) - \frac{\Lambda_{\eta}^{3}}{m_{\eta}^{3}} Y(\Lambda_{\eta} r_{ij}) \right] \\ &\times \left[\cos \theta_{P}(\lambda_{i}^{8} \lambda_{j}^{8}) - \sin \theta_{P}(\lambda_{i}^{0} \lambda_{j}^{0}) \right], \end{aligned}$$

Methods:

(1) Resonance group method (RGM):

$$\begin{split} \Psi_{5q} &= \mathcal{A}[[\phi_A(\boldsymbol{\rho}_A, \boldsymbol{\lambda}_A)\phi_B(\boldsymbol{\rho}_B]^{[\sigma]IS}\chi(\boldsymbol{R})Z(\boldsymbol{R}_{cm})] \\ \hat{\phi_A}(\boldsymbol{\rho}_A, \boldsymbol{\lambda}_A) &= (\frac{2}{3\pi b^2})^{3/4}(\frac{1}{2\pi b^2})^{3/4}e^{-(\frac{\lambda_A^2}{3b^2} + \frac{\rho_A^2}{4b^2})}\eta_{I_AS_A}\chi_c(A), \\ \hat{\phi_B}(\boldsymbol{\rho}_B) &= (\frac{1}{2\pi b^2})^{3/4}e^{-\frac{\rho_B^2}{4b^2}}\eta_{I_BS_B}\chi_c(B). \end{split}$$

② Coordinate Generation Method:

$$\chi(\boldsymbol{R}) = \frac{1}{\sqrt{4\pi}} \left(\frac{6}{5\pi b^2}\right)^{3/4} \sum_{i,L,M} C_{i,L} \int \exp\left[-\frac{3}{5b^2} \left(\boldsymbol{R} - \boldsymbol{S}_i\right)^2\right] Y_{LM} \left(\hat{\boldsymbol{S}}_i\right) d\Omega_{\boldsymbol{S}_i}$$

③ Real-scaling Method: (to check the resonance states)

FIG. 1: The shape of the resonance in real-scaling method.[H. S. Taylor, Adv. Chem. Phys. 18, 91 (1970)]

■ spin degree of freedom:

$$\begin{split} \chi_{\frac{1}{2},\frac{1}{2}}^{\sigma^{1}}(5) &= \chi_{\frac{1}{2},\frac{1}{2}}^{\sigma}(3)\chi_{0,0}^{\sigma}(2) \\ \chi_{\frac{1}{2},\frac{1}{2}}^{\sigma^{2}}(5) &= -\sqrt{\frac{2}{3}}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma}(3)\chi_{1,1}^{\sigma}(2) + \sqrt{\frac{1}{3}}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma}(3)\chi_{1,0}^{\sigma}(2) \\ \chi_{\frac{1}{2},\frac{1}{2}}^{\sigma^{3}}(5) &= \sqrt{\frac{1}{6}}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}(3)\chi_{1,1}^{\sigma}(2) - \sqrt{\frac{1}{3}}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}(3)\chi_{1,0}^{\sigma}(2) \\ &+ \sqrt{\frac{1}{2}}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}(3)\chi_{1,-1}^{\sigma}(2) \\ \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma^{4}}(5) &= \chi_{\frac{1}{2},\frac{1}{2}}^{\sigma}(3)\chi_{0,0}^{\sigma}(2) \\ \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma^{6}}(5) &= \sqrt{\frac{3}{5}}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}(3)\chi_{1,0}^{\sigma}(2) - \sqrt{\frac{2}{5}}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}(3)\chi_{1,1}^{\sigma}(2) \\ \chi_{\frac{5}{2},\frac{5}{2}}^{\sigma}(5) &= \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}(3)\chi_{1,1}^{\sigma}(2) \end{split}$$

 $\chi(5)$ stands for wave functions of five-quark system $\chi(3)$ stands for wave functions of three-quark system $\chi(2)$ stands for wave functions of two-quark system

■ flavor degree of freedom:

$$\begin{split} \chi_{0,0}^{f1}(5) &= \chi_{0,0}^{f}(3)\chi_{0,0}^{f}(2) \\ \chi_{0,0}^{f2}(5) &= \sqrt{\frac{1}{2}}\chi_{\frac{1}{2},\frac{1}{2}}^{f}(3)\chi_{\frac{1}{2},-\frac{1}{2}}^{f}(2) - \sqrt{\frac{1}{2}}\chi_{\frac{1}{2},-\frac{1}{2}}^{f}(3)\chi_{\frac{1}{2},\frac{1}{2}}^{f}(2) \\ \chi_{0,0}^{f3}(5) &= \sqrt{\frac{1}{3}}\chi_{1,1}^{f}(3)\chi_{1,-1}^{f}(2) - \sqrt{\frac{1}{3}}\chi_{1,0}^{f}(3)\chi_{1,0}^{f}(2) \\ &+ \sqrt{\frac{1}{3}}\chi_{1,-1}^{f}(3)\chi_{1,1}^{f}(2) \end{split}$$
(2)

color degree of freedom:

$$\chi^{c} = \frac{1}{\sqrt{6}}(rgb - rbg + gbr - grb + brg - bgr) \times \frac{1}{\sqrt{3}}(r\bar{r} + g\bar{g} + b\bar{b})$$

III Results

$$J^P = \frac{1}{2}^-$$
 sector

TABLE III: The energies of the $qqq\bar{q}c$ pentaquark system with quantum numbers $J^P = \frac{1}{2}^-$ (unit: MeV).

structure	χ^{f_i}	χ^{σ_j}	χ^{c_k}	Channel	$E_{th}(Theo.)$	E_{sc}/E'_{sc}	E_B	E_{ccs}/E_{ccs}'	E_{cct}/E_{cct}'
$qqq - \bar{q}c$	i = 2	j = 1	k = 1	ND	2778.3	2779.4/2809.	1 0	2776 4/2801 0	2597.6/2574.4
	i = 2	j = 2	k = 1	ND^*	2862.3	2864.4/2946.4	4 0	2110.4/2001.0	
$qqc - \bar{q}q$	i = 1	j = 2	k = 1	$\Lambda_c \omega$	3027.0	3029.5/3069.3	2 0		
	i = 3	j = 1	k = 1	$\Sigma_c \pi$	2623.0	2625.2/2593.0	6 0	2613.9/2583.1	
	i = 3	j = 2	k = 1	$\Sigma_c \rho$	3254.0	3251.3/3226.	6 -2.7		
	i = 3	j = 3	k = 1	$\Sigma_c^* ho$	3278.6	3266.1/3281.3	2 -12.5		
The proportion of each channel in $qqq - \bar{q}c$ channel coupling, $ND: 84.0\%$; $ND^*: 16.0\%$.									
The propo	rtion of	each chan	nel in qq	$qc - \bar{q}q$ char	nnel coupling,	$\Sigma_c \pi: 87.3\%; 1$	$\Lambda_c \omega : 11.1\%; 1$	rests: 1.6%.	
The proper	rtion of	ooch chor	nol in to	tal channel		00 0%. ND	. 8 10%. roote.	1 00%	

 $qqc - \bar{q}q$ structure formed a quasi-bound state(-3MeV), which is closed to the $\Sigma_c(2800)$. similar conclusion:

[Y. Dong et al., Phys. Rev. D 81, 074011 (2010)]

[J. R. Zhang, Int. J. Mod. Phys. Conf. Ser. 29, 1460220 (2014)]

[L. Zhao et al., Eur. Phys. J. A 53, 28 (2017)]

[S. Sakai et al., Phys. Lett. B 808, 135623 (2020)]

[Q. Zhang et al., Eur. Phys. J. C 81, 224 (2021)]

TABLE IV: The RMS of the $qqq\bar{q}c$ pentaquark system v	vith
quantum numbers $J^P = \frac{1}{2}^-$ (unit: fm).	

	Channel	R	nature						
	ND	2.85	scattering						
	ND^*	3.73	scattering	/ [
single	$\Lambda_c \omega$	3.99	scattering						
channel	$\Sigma_c \pi$	3.39	scattering						
	$\Sigma_c ho$	1.87	bound						
2	$\Sigma_c^* ho$	1.63	bound						
channel-	$E_{cct}(2598)$	1.35	bound						
coupling	$E_{ccs}(2776)$	3.45	scattering	-					
	E(2905)	4.33	scattering						
The proportion of each channel in $E_{cct}(2598)$,									
$\Sigma_c \pi : 90.00$	%; ND: 8.1%;	rests: 1.9%.							
The propor	tion of each char	nnel in $E_{ccs}(2)$	2776),						
ND: 84.09	$\%; ND^*: 16.0\%$								
The proportion of each channel in $E(2905)$,									
$ND^*: 86.6\%; ND: 10.9\%;$ rests: 2.5%.									

the bound state

7

be 2574.4 MeV after mass correction determined to be $\Lambda_c(2595)$

[J. X. Lu et al., Phys. Rev. D 92, 014036 (2015)] [J. Nieves etal., Phys. Rev. D 101, 014018 (2020)] [Q. Zhang et al., Eur. Phys. J. C 81, 224 (2021)]

the ND & ND* quasi-bound state determined to be scattering state

the avoid-crossing structure (was possible to be $\Lambda c(2910)$) determined to be scattering state

$$J^P = \frac{3}{2}^-$$
 sector

TABLE V: The energies of the $qqq\bar{q}c$ pentaquark system with quantum numbers $J^P = \frac{3}{2}^-$ (unit: MeV).

structure	χ^{f_i}	χ^{σ_j}	χ^{c_k}	Channel	$E_{th}(Theo.)$	E_{sc}/E_{sc}'	E_B	E_{ccs}/E_{ccs}'	E_{cct}/E_{cct}'
$qqq - \bar{q}c$	i = 2	j = 4	k = 1	ND^*	2862.3	2853.9/2937.9	-8.5	2853.9/2937.9	
$qqc - \bar{q}q$	i = 1	j = 4	k = 1	$\Lambda_c \omega$	3027.0	3030.3/3069.2	0		2624.4/2634.7
	i = 3	j = 4	k = 1	$\Sigma_c \rho$	3254.0	3177.4/3152.7	-76.6		
	i = 3	j = 5	k = 1	$\Sigma_c^*\pi$	2647.6	2649.8/2658.0	0	2636.9/2646.9	
	i = 3	j = 6	k = 1	$\Sigma_c^* ho$	3278.6	3264.7/ 3279.8	-13.9		
The proportion of each channel in $qqc - \bar{q}q$ channel coupling, $\Sigma_c^* \pi : 83.8\%$; $\Lambda_c \omega : 8.5\%$; rests: 7.7%.									

The proportion of each channel in channel coupling, $\Sigma_c^* \pi : 95.6\%$; $\Lambda_c \omega : 2.9\%$; rests: 1.5\%.

the ND* bound state could result in a resonance state.

similiar conclusion:

- [Y. Dong et al., Phys. Rev. D 82, 034035 (2010)]
- [J. He et al., Phys. Rev. D 82, 114029 (2010)]
- [P. G. Ortega et al., Phys. Lett. B 718, 1381 (2013)]
- [J. R. Zhang, Phys. Rev. D 89, 096006 (2014)]
- [X. Y. Wang et al., Phys. Rev. D 92, 094032 (2015)]
- [D. R. Entem etal., AIP Conf. Proc. 1701, 050003 (2016)]
- [L. Zhao et al., Eur. Phys. J. A 53, 28 (2017)]
- [X. G. He et al., Eur. Phys. J. C 51, 883 (2007)]

TABLE V	I: The	RMS a	of the	$qqq\bar{q}$	c pentaquark	system	with
quantum :	number	$J^P =$	$=\frac{3}{2}^{-}$	unit:	fm).		

uantum nun	mbers $J^P = \frac{3}{2}^-$ (1)	unit: fm).		2634.7MeV after mass correction
	Channel	R	nature	determined to be $\Lambda_c(2625)$
	ND^*	1.91	bound	[C Garcia-Recip et al Phys Rev D 79 054004 (2009)
single	$\Lambda_c \omega$	3.92	scattering	$\begin{bmatrix} O \text{ Bomparts et al. Phys. Rev. D 85 114032 (2012) \end{bmatrix}$
channel	$\Sigma_c ho$	1.40	bound	$\begin{bmatrix} 0. \text{ Roman et al., Finy S. Rev. D 65, 114052} (2012) \end{bmatrix}$
	$\Sigma_c^*\pi$	3.56	scattering	[Q. Znang et al., Eur. Phys. J. C 61 , 224 (2021)]
	$\Sigma_c^* ho$	1.74	bound	7
channel-	$E_{cct}(2624)$	1.44	bound	
coupling	E(2849)	1.86	resonance	2022 OM_{eV} after mass correction
	E(3160)	1.38	resonance	
The propor	rtion of each char	nnel in $E_{cct}(2$	624),	determined to be $\Lambda_c(2940)$
$\Sigma_c^*\pi:95.6$	%; $\Lambda_c \omega : 2.9\%;$	rests: 1.5%.		F
The propor	rtion of each char	nnel in $E(2849)$	9),	
$ND^*: 66.$	5%; $\Sigma_c^*\pi: 25.1\%$; rests: 8.4%		resonance state
The propor	rtion of each char	nnel in $E(316)$	0),	→ 3140MeV after mass correction
$\Sigma_c \rho: 71.99$	$\%; \ \Sigma_c^* \rho: 25.2\%;$	rests: 2.9%.		predicted to exist

bound state

$$J^P = \frac{5}{2}^-$$
 sector

TABLE VII: The energies of the $qqq\bar{q}c$ pentaquark system with quantum numbers $J^P = \frac{5}{2}^-$ (unit: MeV).

structure	χ^{f_i}	χ^{σ_j}	χ^{c_k}	Channel	$E_{th}(Theo.)$	E_{sc}/E_{sc}^{\prime}	E_B	E_{ccs}/E_{ccs}'	E_{cct}/E_{cct}'
$qqc - \bar{q}q$	i = 3	j = 7	k = 1	$\Sigma_c^* \rho$	3278.6	3173.2/ 3188.3	-105.4	3173.2/3188.3	3173.2/3188.3

A deeply bound state is predicted to exist, with the binding energy of -105.4 MeV the corrected mass of this state is 3188.3 MeV

The value of RMS of this state is 1.38 fm, which shows that it is a molecular state.

IV Summary

NNU·俞尔师范大学 NANJING NORMAL UNIVERSITY

Three bound states are obtained in present work, among which $\Lambda_c(2595)$ can be interpreted as the molecular state with $J^P = \frac{1}{2}^-$ and the main component is $\Sigma_c \pi$.

 $\Lambda_c(2625)$ can be interpreted as the molecular state with $J^P = \frac{3}{2}^-$ and the main component is $\Sigma_c^* \pi$. Besides, the $\Sigma_c^* \rho$ with $J^P = \frac{5}{2}^-$ is predicted to be a deeply bound state with the mass of 3188.3 MeV.

In present work, $\Lambda_c(2910)$ cannot be interpreted as a molecular state, and $\Sigma_c(2800)$ cannot be explained as the ND molecular state with $J^P = \frac{1}{2}^{-1}$

Two resonancestates are obtained, in which the $\Lambda_c(2940)$ is likely to be interpreted as a molecular state with $J^P = \frac{3}{2}^-$, and the main component is ND*. Besides, a new molecular state $\Sigma_{c\rho}$ with $J^P = \frac{3}{2}^-$ is predicated, whose mass is about 3140 MeV.

Thanks for your attention!