Recent results of heavy flavor and CPV at ATLAS

Yue Xu On behalf of the ATLAS Collaboration

Tsinghua University

HFCPV2022

11 December, 2022

The ATLAS detector

- ATLAS (A Toroidal LHC ApparatuS) is one of the two general-purpose detectors at the Large Hadron Collider (LHC)
 - Coverage: $|\eta| < 2.5$
 - Magnetic field: 2T
- Excellent track and muon identification with the goodness of the inner detector and muon spectrometer.

Outline

- Observation of an excess of di-charmonium events in the fourmuon final state at $\sqrt{s} = 13$ TeV with the ATLAS detector (2015-2018) <u>ATLAS-CONF-2022-040</u>
- Measurement of the CP-violation phase ϕ_s in $B_s^0 \rightarrow J/\psi\phi$ decays in ATLAS at 13 TeV (2015-2017) Eur. Phys. J. C 81 (2021) 342

- Observation of an excess of di-charmonium events in the fourmuon final state with the ATLAS detector (2015-2018) <u>ATLAS-</u> <u>CONF-2022-040</u>
- Measurement of the CP-violation phase ϕ_s in $B_s^0 \rightarrow J/\psi\phi$ decays in ATLAS at 13 TeV (2015-2017) <u>Eur. Phys. J. C 81</u> (2021) 342

X(6900) from LHCb

• At June 2020, LHCb claimed evidence for a narrow resonance in the di- J/ψ to 4 muons spectrum at **6.9 GeV**, presumably coming from 4-charm quark state.

arXiv:2006.16957

LHCb model I: no interference	$m[X(6900)] = 6905 \pm 11 \pm 7 \text{MeV}/c^2$ $\Gamma[X(6900)] = 80 \pm 19 \pm 33 \text{MeV}$
LHCb model II: interference	$m[X(6900)] = 6886 \pm 11 \pm 11 \text{ MeV}/c^2$ $\Gamma[X(6900)] = 168 \pm 33 \pm 69 \text{ MeV}$

Data, Signal and backgrounds

- Data: 139 fb⁻¹ @ 13 TeV in 2015-2018.
- Signal process: tetraquark (TQ) $\rightarrow J/\psi + J/\psi$ or $J/\psi + \psi(2S) \rightarrow 4\mu$
- Backgrounds:
 - Single parton scattering (SPS)
 - Double parton scattering (DPS)
 - Non-prompt ($b\bar{b} \rightarrow J/\psi + J/\psi/\psi(2S) + X \rightarrow 4\mu$)
 - Single J/ψ background and non-peaking background containing no real J/ψ candidate (Others)

color octet production

SPS

HFCPV2022

Event selection and analysis regions

• Two positive charged muons and two negative charged muons:

HFCPV2022

- $p_T(\mu_1) > 4$, $p_T(\mu_2) > 4$, $p_T(\mu_3) > 3$, $p_T(\mu_4) > 3$ GeV and $|\eta_{\mu_1, \mu_2, \mu_3, \mu_4}| < 2.5$
- Signal region (SR) is used to extract signal parameters (e.g. mass, width).
- SPS and DPS control regions (CR) are used to estimate SPS and DPS backgrounds.
- Non-prompt region is used to validate non-prompt background estimation.

SR	Tight vertex cuts:	$m_{4\mu} < 7.5 {\rm GeV}, \\ \Delta R < 0.25 {\rm between charmonia}$			
SPS CR	$ L_{xy}^{di-\mu} < 0.3 \text{ mm}$ $L_{xy}^{4\mu} < 0.2 \text{ mm}$	7.5 GeV < $m_{4\mu}$ < 12.0 GeV			
DPS CR	$\chi^2_{4\mu}/N < 3$	14.0 GeV < $m_{4\mu}$ < 25.0 GeV			
Non-prompt region	Reverse vertex cuts: $\chi^2_{4\mu}/N > 6$ and $ L^{di-\mu}_{xy} > 0.4$ mm				

Yue Xu

THU

Fit models

- Unbinned maximum likelihood fits are performed to extract the signal parameters (e.g. mass m, width Γ)
- Fit regions:

with a J/ψ or $\psi(2S)$ mass constraint

- Fit SR: $m_{4\mu}^{\text{con}}$ < 11 GeV and ΔR < 0.25
- Fit CR: $m_{4\mu}^{\rm CON} < 11$ GeV and $\Delta R \geq 0.25,$ for SPS shape validation
- In di- J/ψ channel, **3-peak model** with interference among signals is considered. 2-peak model is also tested but with worse fit quality.

$$f_s(x) = \left| \sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + im_i \Gamma_i} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\alpha)$$

THU

Resolution function

HFCPV2022

Fit models

- In $J/\psi + \psi(2S)$ channel, due to lower statistics, two models are considered.
 - Model A: the same peaks with interference observed in the di- J/ψ channel also decaying into $J/\psi + \psi(2S)$ plus a standalone peak.

$$f_s(x) = \left(\left| \sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + im_i \Gamma_i} \right|^2 + \left| \frac{z_3}{x^2 - m_3^2 + im_3 \Gamma_3} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2} \otimes R(\alpha)$$

• Model B: only one single peak

THU

Fit results in di- J/ψ channel

- The **3rd peak** mass is consistent with the LHCb observed X(6900), with significance of **10** σ
- The broad structure at the lower mass could from other physical effects, e.g. feed-down from higher dicharmonium resonances

THU

Extracted masses and widths (GeV)

HFCPV2022

Yue Xu

10

Fit results in $J/\psi + \psi(2S)$ channel

model B

• In model A, the 1st peak could be related to X(6900) in the di- J/ψ channel. The significance of **2nd peak** (7.2 GeV) reaches 3.2σ , also hinted by LHCb in the di- J/ψ spectrum

 $6.78 \pm 0.36^{+0.35}_{-0.54}$

 $0.39 \pm 0.11^{+0.11}_{-0.07}$

Uncertainties

Systematics (MoV)		di- J/ψ						J/ψ + ψ (2S)	
	m_0	Γ_0	m_1	Γ_1	m_2	Γ_2	m_3	Γ_3	
SPS theory		15	4	20	5	6		<1	
SPS di-charmonium $p_{\rm T}$	<1	8	4	14	5	7		<1	
Background MC statistics	<1	8	4	14	5	7		<1	
Mass resolution	19	34	3	21	4	9	<1	4	
Fit bias	43	58	10	56	11	16	13	41	
Nonclosure	<1						<1		
Transfer factor						<1	16		
Presence of fourth peak	29	49	11	108	60	18			
Interference of fourth peak				_			29	11	
Data statistics	50	119	34	88	30	39	28	130	

 Data statistics has the largest impact in both two channels, followed by the systematic uncertainty from impact of fourth peak

- Observation of an excess of di-charmonium events in the fourmuon final state with the ATLAS detector (2015-2018) <u>ATLAS-</u> <u>CONF-2022-040</u>
- Measurement of the CP-violation phase ϕ_s in $B_s^0 \rightarrow J/\psi\phi$ decays in ATLAS at 13 TeV (2015-2017) <u>Eur. Phys. J. C 81</u> (2021) 342

Introduction

- In the presence of new physics phenomena, additional sources of *CP* violation in *b*-hadron decays can arise.
- This analysis studies the $B_s^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decay. The CP violation occurs due to interference between a direct decay and a decay from $B_s^0 \overline{B_s^0}$ mixing.
- CP violation phase ϕ_s : the weak phase difference between the $B_s^0 B_s^0$ mixing amplitude and the $b \rightarrow c\bar{c}s$ decay amplitude.
- In Standard Model, $\phi_s \approx -2\beta_s = -0.03696^{+0.00072}_{-0.00082}$ rad [CKMFitter]

Physical parameters:

• φ.

Flavour tagging

- Tag flavour of the signal B meson using the opposite b-hadron produced from the pair production of ϕ b and \bar{b} quarks.
- "Cone charge" (Q_x) is defined as p_T weighted sum of charge in a cone of size ΔR , which provides strong discrimination power.

$$Q_x = \frac{\sum_{i}^{N \text{ tracks}} q_i \cdot (p_{\mathrm{T}i})^{\kappa}}{\sum_{i}^{N \text{ tracks}} (p_{\mathrm{T}i})^{\kappa}}$$

- Muon (electron)-based tagging: semileptonic decay of a B meson; $\kappa = 1.1$ (1.0) and $\Delta R = 0.5$
- Jet tagging: in the absence of a muon or electron; $\kappa = 1.1$ and $\Delta R = 0.5$
- Taggers are calibrated and optimized by self-tagging $B^{\pm} \rightarrow J/\psi K^{\pm}$ channel
- Classify taggers by efficiency (ϵ_x), dilution (D_x) and tagging power (T_x).

Tag method	ϵ_{x} (%)	D_{x} (%)	T_{X} (%)
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01

THU

 B_s

 $\bar{B}_{u,d,s}$

Fit to data

- Data: 80.5 fb⁻¹ @ 13 TeV in 2015-2017.
- An unbinned maximum likelihood fit is ulletperformed with a combination of signal and background probability density functions (PDFs).
- A time-dependent angular analysis is required ulletto untangle CP-even and odd states.

$$\ln \mathcal{L} = \sum_{i=1}^{N} w_i \cdot \ln[f_s \cdot \mathcal{F}_s(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i}) \\ + f_s \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i}) \\ + f_s \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i}) \\ + (1 - f_s \cdot (1 + f_{B^0} + f_{\Lambda_b}))\mathcal{F}_{bkg}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i})],$$

Fit results

- The measurement of ϕ_s is consistent with the SM prediction.
- Contours of 68% confidence level are set in the $\phi_s \Delta \Gamma_s$ plane. The results are consistent with the Run1 results, and improves the precision of previous ATLAS measurements.

Parameter	Value	Statistical uncertainty	Systematic uncertainty				
ϕ_s [rad]	-0.081	0.041	0.022	÷ Γ			
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	0.0607	0.0047	0.0043	sd 0 12	ATLAS √5 - 7 8 13 ToV	Run1, 7 and 8 TeV, 19.2 f	b ⁻¹ -
$\Gamma_s \ [\mathrm{ps}^{-1}]$	0.6687	0.0015	0.0022	ΔL	68% CL contours	Combined $19.2 + 80.5 \text{ fb}^{-1}$	
$ A_{\parallel}(0) ^2$	0.2213	0.0019	0.0023			— SM prediction	1
$ A_0(0) ^2$	0.5131	0.0013	0.0038	0.1-	and the second se		-
$ A_{S}(0) ^{2}$	0.0321	0.0033	0.0046	-			-
$\delta_{\perp} - \delta_S$ [rad]	-0.25	0.05	0.04	0.08			_
Solution (a)				0.08-			-
δ_{\perp} [rad]	3.12	0.11	0.06	ŀ		t	
δ_{\parallel} [rad]	3.35	0.05	0.09	0.06-		γ	-
Solution (b)				-		···	-
δ_{\perp} [rad]	2.91	0.11	0.06		-0.2	0 0.2	radī
δ_{\parallel} [rad]	2.94	0.05	0.09			ψ_{s} [auj

Comparisons

• HFLAV average for PDG 2021: $\phi_s = -0.050 \pm 0.019$ rad.

Summary

- Analysis of di-charmonium events:
 - A broad structure at lower mass and a resonance around 6.9 GeV are observed in the di- J/ψ channel.
 - A significant of 4.6σ is observed in the $J/\psi + \psi(2S)$ channel with a model of an enhancement at about 6.9 GeV plus a standalone peak.
- Measurement of CP-violation phase:
 - The measured values of physical parameters are consistent with the SM values.
 - Working with full Run2 data to improve precision.

Thanks!

BACKUP

Introduction

• The quark model was proposed by Gell-Mann and Zweig sixty years ago

• Exotic hadrons were predicted at the same time as conventional $q\bar{q}$ mesons and qqq baryons.

Yue Xu

HFCPV2022

THU

The ATLAS detector

- ATLAS (A Toroidal LHC ApparatuS) is one of the two general-purpose detectors at the Large Hadron Collider (LHC)
 - Coverage: $|\eta| < 2.5$
 - Magnetic field: 2T

HFCPV2022

THU

MC samples

Di-charmonium Process	Generator	PDF	Parton shower	Tune
SPS	Рутніа 8.244[<mark>20</mark>]	NNPDF23LO[22]		A14[21]
DPS	Рутніа 8.244	NNPDF23LO		A14
Non-prompt	Рутніа 8.244	NNPDF23LO	Pythia 8.244+NNPDF23LO	A14
X(6900)	JHU[<mark>26</mark>]	CTEQ6L1[27]		A14

Functions

Likelihood function:

$$\mathcal{L} = \mathcal{L}_{SR}\left(\vec{\alpha}, \vec{\beta}\right) \cdot \mathcal{L}_{CR}\left(\vec{\alpha}\right) \cdot \prod_{j=1}^{K} G\left(\alpha'_{j}; \alpha_{j}, \sigma_{j}\right)$$

✦ Significance is calculated with asymptotic formula:

$$Z = \sqrt{2 \ln \frac{L(\hat{s}, \hat{\theta})}{L(s=0, \hat{\theta})}}$$

Event selection

- ✦ Di-muon or tri-muon triggers
- ✦ Baseline selections:
 - Two positive charged muons and two negative charged muons:
 - $p_T(\mu_1) > 4$, $p_T(\mu_2) > 4$, $p_T(\mu_3) > 3$, $p_T(\mu_4) > 2$ GeV

•
$$|\eta_{\mu_1, \mu_2, \mu_3, \mu_4}| < 2.5$$

- ⇒ J/ψ mass window: 2.94 GeV< $m_{J/\psi}$ < 3.25 GeV ; $\psi(2S)$ mass window: 3.56 < m_{ψ} < 3.80 GeV
- ➡Loose vertex cuts:
 - Vertex fit quality of 4μ candidate: $\chi^2_{4\mu}/N < 40$
 - Vertex fit quality of J/ψ and $\psi(2S)$: $\chi^2_{di-\mu}/N < 100$

CPV — flavour tagging

HFCPV2022

Yue Xu

CPV — flavour tagging

Yue Xu

CPV — parameters

Table 4 The ten time-dependent functions, $O^{(k)}(t)$ and the functions of the transversity angles $g^{(k)}(\theta_T, \psi_T, \phi_T)$. The amplitudes $|A_0(0)|^2$ and $|A_{\parallel}(0)|^2$ are for the *CP*-even components of the $B_s^0 \rightarrow J/\psi\phi$ decay, $|A_{\perp}(0)|^2$ is the *CP*-odd amplitude; they have corresponding strong phases δ_0 , δ_{\parallel} and δ_{\perp} . By convention, δ_0 is set to be zero. The *S*- wave amplitude $|A_S(0)|^2$ gives the fraction of $B_s^0 \to J/\psi K^+ K^-(f_0)$ and has a related strong phase δ_S . The factor α is described in the text of Sect. 5.1. The \pm and \mp terms denote two cases: the upper sign describes the decay of a meson that was initially a B_s^0 meson, while the lower sign describes the decays of a meson that was initially \bar{B}_s^0

k	$O^{(k)}(t)$	$g^{(k)}(\theta_T, \psi_T, \phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) \mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} + (1-\cos\phi_s) \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t} \pm 2\mathrm{e}^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}\left[(1+\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
5	$ A_{\parallel}(0) A_{\perp}(0) \left[\frac{1}{2} (\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}) \cos(\delta_{\perp} - \delta_{\parallel}) \sin\phi_{s} \pm \mathrm{e}^{-\Gamma_{s}t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_{s}t))\right]$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
	$-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))\Big]$	
6	$ A_0(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos\delta_{\perp}\sin\phi_s \pm \mathrm{e}^{-\Gamma_s t}(\sin\delta_{\perp}\cos(\Delta m_s t) - \cos\delta_{\perp}\cos\phi_s\sin(\Delta m_s t))\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
7	$\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_{\mathcal{S}}(0) A_{\parallel}(0) \left[\frac{1}{2} (\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}) \sin(\delta_{\parallel} - \delta_{\mathcal{S}}) \sin\phi_{s} \pm \mathrm{e}^{-\Gamma_{s}t} (\cos(\delta_{\parallel} - \delta_{\mathcal{S}}) \cos(\Delta m_{s}t) + \mathrm{e}^{-\Gamma_{s}t} (\cos(\delta_{\parallel} - \delta_{\mathcal{S}}) \cos(\Delta m_{s}t)) \right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
	$-\sin(\delta_{\parallel}-\delta_{S})\cos\phi_{s}\sin(\Delta m_{s}t))$	
9	$\frac{1}{2}\alpha A_{S}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{S})\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$
10	$\alpha A_0(0) A_S(0) \left[\frac{1}{2} (\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}) \sin \delta_S \sin \phi_s \pm \mathrm{e}^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t)) \right]$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$

CPV — fit results

Parameter	Value	Statistical uncertainty	Systematic uncertainty		
ϕ_s [rad]	-0.081	0.041	0.022		
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	0.0607	0.0047	0.0043		
$\Gamma_s \ [\mathrm{ps}^{-1}]$	0.6687	0.0015	0.0022		
$ A_{\parallel}(0) ^2$	0.2213	0.0019	0.0023		
$ A_0(0) ^2$	0.5131	0.0013	0.0038		
$ A_{S}(0) ^{2}$	0.0321	0.0033	0.0046		
$\delta_{\perp} - \delta_S$ [rad]	-0.25	0.05	0.04		
Solution (a)					
δ_{\perp} [rad]	3.12	0.11	0.06		
δ_{\parallel} [rad]	3.35	0.05	0.09		
Solution (b)					
δ_{\perp} [rad]	2.91	0.11	0.06		
δ_{\parallel} [rad]	2.94	0.05	0.09		

CPV — systematics

Fable 5 Summary of systematic uncertainties assigned to the physical parameters of interest									
	$\phi_s \\ (10^{-3} \text{ rad})$	$\frac{\Delta\Gamma_s}{(10^{-3} \text{ ps}^{-1})}$	Γ_s (10 ⁻³ ps ⁻¹)	$ A_{\parallel}(0) ^2$ (10 ⁻³)	$\frac{ A_0(0) ^2}{(10^{-3})}$	$ A_S(0) ^2$ (10 ⁻³)	δ_{\perp} (10 ⁻³ rad)	δ_{\parallel} (10 ⁻³ rad)	$\frac{\delta_{\perp} - \delta_S}{(10^{-3} \text{ rad})}$
Tagging	19	0.4	0.3	0.2	0.2	1.1	17	19	2.3
ID alignment	0.8	0.2	0.5	< 0.1	< 0.1	< 0.1	11	7.2	< 0.1
Acceptance	0.5	0.3	< 0.1	1.0	0.9	2.9	37	64	8.6
Time efficiency	0.2	0.2	0.5	< 0.1	< 0.1	0.1	3.0	5.7	0.5
Best candidate selection	0.4	1.6	1.3	0.1	1.0	0.5	2.3	7.0	7.4
Background angles model									
Choice of fit function	2.5	< 0.1	0.3	1.1	< 0.1	0.6	12	0.9	1.1
Choice of $p_{\rm T}$ bins	1.3	0.5	< 0.1	0.4	0.5	1.2	1.5	7.2	1.0
Choice of mass window	9.3	3.3	0.2	0.4	0.8	0.9	17	8.6	6.0
Choice of sidebands intervals	0.4	0.1	0.1	0.3	0.3	1.3	4.4	7.4	2.3
Dedicated backgrounds									
B_d^0	2.6	1.1	< 0.1	0.2	3.1	1.5	10	23	2.1
Λ_b	1.6	0.3	0.2	0.5	1.2	1.8	14	30	0.8
Alternate Δm_s	1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	15	4.0	< 0.1
Fit model									
Time res. sig frac	1.4	1.1	0.5	0.5	0.6	0.8	12	30	0.4
Time res. $p_{\rm T}$ bins	0.7	0.5	0.8	0.1	0.1	0.1	2.2	14	0.7
S-wave phase	0.3	< 0.1	< 0.1	< 0.1	< 0.1	0.2	8.0	15	37
Fit bias	5.7	1.3	1.2	1.3	0.4	1.1	3.3	19	0.3
Total	22	4.3	2.2	2.3	3.8	4.6	55	88	39