Observation of VBS processe with the ATLAS detector

The 3rd Workshop on Frontiers of Particle Physics

Jing Chen

2022.07.22

Introduction

- Vector boson scattering (VBS) measurements offers an important way to probe electroweak symmetry breaking.
- A good probe of the SM in the EW sector. • Measure VBS via the corresponding EW productions.
- Sensitive to new physics: • probe aTGC, aQGC ...

Higgs boson exchange Four boson vertex Vector boson exchange

Main interest of VV scattering

• Without Higgs, $W_L^+W_L^- \rightarrow Z_LZ_L$ would break unitarity.

 $\mathcal{M}(W_L^+W_L^- \to Z_L Z_L) \sim \frac{s}{m_{\mu\nu}^2}$

波道研究近

Dao Lee Institute

海交通大學

- The presence of the Higgs boson prevents the VBS amplitudes from violating unitarity at the TeV scale.
- To understand the nature of EWSB:
 - precise measurements of hVV couplings
 - Measurement of VV→VV cross-sections

不改道研究近

-Dao Lee Institute

酒交通大學

Jing Chen

Page . 4

VBS measurements

上海交通大學 | 卡达道研究町 SHANGHAI JIAO TONG UNIVERSITY TSUNG-DAO Lee Institute

γγγ	$\sigma = 72.6 \pm 6.5 \pm 9.2 \text{ fb (data)}$ NNLO (theory)			••••	20.2	PLB 7	781 (2018) 55	CMC
$Z\gamma\gamma \rightarrow \ell\ell\gamma\gamma$	σ = 5.07 + 0.73 - 0.68 + 0.42 - 0.39 fb (data) MCFM NLO (theory)	ATLAS Pre	eliminary		20.3	PRD	93, 112002 (2016)	
$-[n_{jet} = 0]$	σ = 3.48 + 0.61 - 0.56 + 0.3 - 0.26 fb (data) MCFM NLO (theory)	_		A	20.3	PRD	93, 112002 (2016)	
$W\gamma\gamma \rightarrow \ell \nu\gamma\gamma$	$\sigma = 6.1 + 1.1 - 1 \pm 1.2$ fb (data) MCFM NLO (theory)	$\sqrt{s} = 7,8,13$	3 TeV	▲	20.3	PRL	15 031802 (2015)	
$-[n_{jet}=0]$	$\sigma = 2.9 + 0.8 - 0.7 + 1 - 0.9$ fb (data) MCFM NLO (theory)				20.3	PRL	147+147+::	DDI 400 (0040) 004004
WWγ→evμvγ	$\sigma = 1.5 \pm 0.9 \pm 0.5$ fb (data) VBFNLO+CT14 (NLO) (theory)				20.2	EPJC	VV - VV -]]	PRL 120 (2018) 081801
WWW , (tot.)	$\sigma = 0.82 \pm 0.01 \pm 0.08 \text{ pb (data)}$ NLO QCD (theory) $\sigma = 230 \pm 200 + 150 - 160 \text{ fb (data)}$ Madgraph5 + aMCNLO (theory)				139 20.3	arXiv EPJC		Phys. Lott. P. 200 (2020
– WWW <i>→ℓvℓv</i> jj	$\sigma = 0.24 + 0.39 - 0.33 \pm 0.19$ fb (data) Madoraph5 + aMCNLO (theory)		▲		20.3	EPJC	WZii	PHys. Lett. D 609 (2020
$-WWW \rightarrow \ell \nu \ell \nu \ell \nu$	$\sigma = 0.31 + 0.35 - 0.33 + 0.32 - 0.35$ fb (data) Madgraph5 + aMCNLO (theory)		A		20.3	EPJC))	<u>135710</u>
WWZ , (tot.)	$\sigma = 0.55 \pm 0.14 + 0.15 - 0.13 \text{ pb} (\text{data})$ Sherpa 2.2.2 (theory)	The			79.8	PLB 1		
	$\sigma = 4 \pm 0.3 + 0.3 - 0.4 \text{ pb} (\text{data})$ LHC-HXSWG (theory)	Ine	ory		139	ATLA	77;;	<u>Phys. Lett. B 812 (2020</u>
⊣ JÌ ∧B⊢	$\sigma = 2.43 + 0.5 - 0.49 + 0.33 - 0.26 \text{ pb} (\text{data})$	_		Δ	20.3	EPJC	22))	135992
	$\sigma = 0.79 + 0.11 - 0.1 + 0.16 - 0.12 \text{ pb} (\text{data})$	LHC pp \sqrt{s}	= 13 TeV		139	ATLA		
– H(→VVVV)JJ VBF	$\sigma = 0.51 + 0.17 - 0.15 + 0.13 - 0.08 \text{ pb (data)}$	Data	a 👘	- 	20.3	PRD	.	
	$\sigma = 65.2 \pm 4.5 \pm 5.6 \text{ fb} (data)$	stat	a avat		139	ATLA	Zγjj	PRD 104 (2021) 072007
− H(→γγ)ii VBF	$\sigma = 42.5 \pm 9.8 + 3.1 - 3$ fb (data)	Siai	+ syst	Δ	20.3	ATLA		
(, , , , , , , , , , , , , , , , , , ,	$\sigma = 49 \pm 17 \pm 6 \text{ fb} (\text{data})$ $HC-HXSWG (theory)$	LHC pp √s	= 8 TeV	•	4.5	ATLA		
Nii EWK (M(ii) > 1 TeV)	$\sigma = 43.5 \pm 6 \pm 9 \text{ fb} (\text{data})$ Powhere +Pythia8 NLO (theory)	Data	a 🗖 🗖		20.2	EPJC	Wγjj	PLB 811 (2020) 135988
	$\sigma = 159 \pm 10 \pm 26 \text{ fb (data)}$ Powheg + Pythia8 NI O (theory)	stat			20.2	EPJC		
– M(J) > 500 GeV	$\sigma = 144 \pm 23 \pm 26$ b (data) Powhent Pythia8 NI O (theory)	siai			4.7	EPJC	77 (2017) 474	
	$\sigma = 37.4 \pm 3.5 \pm 5.5 \text{ fb} (\text{data})$	[−] LHC pp \sqrt{s}	= 7 TeV	_	139	EPJC	81 (2021) 163	
ZJJ EVVK	$\sigma = 10.7 \pm 0.9 \pm 1.9 \text{ fb} (\text{data})$	Data	a 🔽		20.3	JHEP	04, 031 (2014)	
	$\sigma = 4.49 \pm 0.4 \pm 0.42 \text{ fb} \text{ (data)}$ Madgraph5 + aMCNL0 (theory)	stat			139	ATLA	S-CONF-2021-038	7
ϪγͿͿΕΨΨΚ	$\sigma = 1.1 \pm 0.5 \pm 0.4 \text{ fb} \text{ (data)}$	stat	⊕ syst		20.3	JHEP	07 (2017) 107	1
14/14/	$\sigma = 3.13 \pm 0.31 \pm 0.28 \text{ fb} \text{ (data)}$ $\sigma = 3.13 \pm 0.31 \pm 0.28 \text{ fb} \text{ (data)}$ $MG5 = MCNI O_{+} Pythia8 \times Sury Fact (0.82)$	(theory)			139	PLB 8	316 (2021) 136190	1
$\gamma \gamma \rightarrow VVVV$	$\sigma = 6.9 \pm 2.2 \pm 1.4 \text{ fb} \text{ (data)}$	(alcoly)		Δ	20.2	PRD	94 (2016) 032011	
(WV+ZV)ii EWK	$\sigma = 45.1 \pm 8.6 \pm 15.9 - 14.6 \text{ fb} (data)$ Madgraph5 ± aMCNI O ± Pythia8 (theory)				35.5	PRD	100, 032007 (2019)	1
	$\sigma = 2.89 + 0.51 - 0.48 + 0.29 - 0.28$ fb (data) PowheeBoy (theory)				36.1	PRL 1	123, 161801 (2019)	
V∸VV∸jj EWK	$\sigma = 1.5 \pm 0.5 \pm 0.2 \text{ fb} (\text{data})$ $\sigma = 0.5 \pm 0.2 \text{ fb} (\text{data})$			A	20.3	PRD	96, 012007 (2017)	
	$\sigma = 0.57 + 0.14 - 0.13 + 0.07 - 0.05$ fb (data)		ſ		36.1	PLB 7	793 (92019) 469	
/V∠jj EWK	$\sigma = 0.29 + 0.14 - 0.12 + 0.09 - 0.1$ fb (data)			Δ	20.3	PRD	93, 092004 (2016)	
ZZII EWK	$\sigma = 0.82 \pm 0.18 \pm 0.11 \text{ fb} \text{ (data)}$				139	arXiv	2004.10612	

data/theory

Jing Chen Page . 5

പ്പ

• VBS observations at the LHC:

13TeV	W [±] W [±] jj	WZjj	ZZjj	Zγjj	Wγjj	$\gamma\gamma \to WW$
ATLAS	6.5σ	5.3σ	5.5σ	10σ	-	8.4 <i>o</i>
CMS	5.5σ	6.8 <i>σ</i>	4 .0 <i>σ</i>	9.4 σ	5.3σ	-

Jing Chen Page . 6

- For VBS processes, many channels have been measured and observed at LHC.
- More details of recent observations will show in the next pages.

Same-sign WWjj

13TeV, 36.1*fb*⁻¹

百交通大學

- **Dilepton channel**
- Significance: $6.5\sigma(4.4\sigma)$
- Cross-sections:
 - Measured: $\sigma^{fid} = 2.89^{+0.51}_{-0.48}(stat.)^{+0.24}_{-0.22}(exp.syst.)^{+0.14}_{-0.16}(mod syst.)^{+0.08}_{-0.06}(lumi)fb$

 e^+e^+

 1.48 ± 0.32

 2.2 ± 1.1

 1.6 ± 0.4

 0.16 ± 0.04

 0.35 ± 0.13

 5.8 ± 1.4

 $5.6~\pm~1.0$

10

 e^-e^-

 1.09 ± 0.27

 1.2 ± 0.6

 1.6 ± 0.4

 0.14 ± 0.04

 0.15 ± 0.05

 $4.1 ~\pm~ 1.1$

 2.2 ± 0.4

4

 $e^+\mu^+$

 11.6 ± 1.9

 5.9 ± 2.5

 $6.3~\pm~1.6$

 0.90 ± 0.20

 2.9 ± 1.0

 ± 4

 ± 5

44

28

24

 $e^{-}\mu^{-}$

 7.9 ± 1.4

 $4.7 ~\pm~ 1.6$

 4.3 ± 1.1

 1.2 ± 0.4

 $18.8 ~\pm~ 2.6$

 9.4 ± 1.8

28

 0.63 ± 0.14

Predicted: $2.01^{+0.33}_{-0.23}fb$ (Sherpa)

波道研究听

-Dao Lee Institute

WZ

Data

Non-prompt

 e/γ conversions

 $W^{\pm}W^{\pm}ii$ strong

Expected background

 $W^{\pm}W^{\pm}jj$ electroweak

Other prompt

 $\mu^{-}\mu^{-}$

 3.4 ± 0.6

 0.68 ± 0.13

 0.22 ± 0.05

 0.76 ± 0.25

 5.1 ± 0.6

 5.1 ± 1.0

11

Phys. Rev. Lett. 123 (2019) 161801

 $\mu^+\mu^+$

 5.0 ± 0.7

 0.56 ± 0.05

 0.39 ± 0.09

 1.8 ± 0.6

 7.7 ± 0.9

 13.4 ± 2.5

25

Jing Chen

Combined

 ± 4

 ± 5

 13.9 ± 2.9

 2.4 ± 0.5

 7.2 ± 2.3

 ± 7

 ± 11

122

30

15

69

60

WZjj

https://atlas.cern/updates/briefing/weak-lightsabers

1st differential measurement

arXiv:2004.10612

ZZjj

- Full Run2 datasets $(139 f b^{-1})$
- Measure the inclusive ZZjj crosssection (EW + QCD)
- Evidence on EW-ZZjj production
 - Combine *lllljj* and *llvvjj*, fit the multivariate analysis (MVA) output to extract the significance of EW component and signal strength

-Dao Lee Institute

Two channels: *lllljj*, *llvvjj*

- Backgrounds:
 - *lllljj*: QCD background, fake lepton background, WWZ...
 - *llvvjj*: Non-Resonant background,
 WZ background, Z+jets background,
 ZZ → *llll*, VVV, ttV, ttVV

arXiv:2004.10612

- To extract EW process, a profile likelihood fit is performed on Gradient Boosted Decision Tree (BDTG) response.
- Observed and expected distributions:

没自研完近

-Dao Lee Institute

• Submitted to Nature Physics.

https://atlas.cern/updates/briefing/milestone-electroweak-symmetry-breaking

ATLAS-CONF-2021-038

Ζγϳϳ

海交通大學

• Full Run2 datasets $(139 f b^{-1})$

改善研究近

Tsung-Dao Lee Institute

• Channel: $Z(\rightarrow ee/\mu\mu)\gamma jj$

Ζγϳϳ

• EW component is extracted with a maximum likelihood on m_{jj} distribution.

不改道研究近

Tsung-Dao Lee Institute

- Simultaneously fit in SR and CR.
- Significance: $10\sigma(11\sigma)$
- Cross-sections:

酒交通大學

$$\begin{split} \sigma_{EW} &= 4.49 \pm 0.40(stat.) \pm 0.42(syst.)fb \\ \sigma_{EW}^{pred} &= 4.73 \pm 0.01(stat.) \\ &\pm 0.15(PDF)^{+0.23}_{-0.22}(scale)fb \\ \sigma_{EW+QCD} &= 20.6 \pm 0.6(stat.)^{+1.2}_{-1.0}(syst.)fb \\ \sigma_{EW}^{pred} &= 20.4 \pm 0.1(stat.) \\ &\pm 0.2(PDF)^{+2.6}_{-2.0}(scale)fb \end{split}$$

ATLAS-CONF-2021-038

$\gamma\gamma \rightarrow WW$

语交通大学

- Full Run2 datasets $(139 f b^{-1})$
- Photon-induced production of Wboson pairs, $WW \rightarrow e^{\pm} \nu \mu^{\pm} \nu$

研究町

- $\gamma \gamma \rightarrow WW$:
 - Trilinear and quartic gauge boson interactions.
 - At LO, only involves diagrams with selfcouplings of the EW gauge bosons.
- Signal process: $pp(\gamma\gamma) \rightarrow p^*W^+W^-p^*$

Directly test the gauge structure of the EW.

Phys. Lett. B 816 (2021) 136190

Sensitive to aTGC, aQGC.

 p_2 X' $W^ W^ W^+$ X' W^+ X

double-dissociative

Phys. Lett. B 816 (2021) 136190

Signal characteristics:

 $n_{trk} = 0$

Quark- and gluon-induced WW or top-quark production

```
еμ
```

 $\gamma \gamma \rightarrow ll$ $p_T^{e\mu} > 30 GeV$ $\gamma \gamma \rightarrow \tau \tau$

- Significance: $8.4\sigma(6.7\sigma)$
- Cross-sections:
 - measured: $3.13 \pm 0.31(stat.) \pm 0.28(syst.)fb$
 - predicted: $3.5 \pm 1.0 fb$

Jing Chen Page . 15

• VBS observations in ATLAS:

ssWWjj, WZjj, ZZjj, Z $\gamma jj,\,\gamma\gamma \to WW$

CMS VBS measurements can be found in

W-Boson Scattering and Interactions at the LHC-CMS experiment- Qiang li(北京大学)

• Next step:

More differential measurements, longitudinal polarization extraction, BSM constraints ...

Backup

VBS measurements

在交通大學

IGHAL ILAO TONG UNIVERSITY

VBF, VBS, and Triboson Cross Section Measurements Status: February 2022

改直研究近

Tsung-Dao Lee Institute

C1V13					
<i>W</i> [±] <i>W</i> [±] jj	5.5(5.7) σ <u>PRL 120 (2018) 081801</u>				
WZjj	6.8(5.3)σ Phys. Lett. B 809 (2020) 135710				
ZZjj	4.0(3.5) σ <u>Phys. Lett. B 812 (2020) 135992</u>				
Zγjj	9.4(8.5)σ PRD 104 (2021) 072001				
Wγjj	5.3(4.8)σ <u>PLB 811 (2020) 135988</u>				

ATLAS

 $10(11)\sigma$ ATLAS-CONF-2021-038 $8.4(6.7)\sigma$ Phys. Lett. B 816 (2021) 136190 $2.7(2.5)\sigma$ Phys. Rev. D 100 (2019) 032007 $6.5(4.4)\sigma$ Phys. Rev. Lett. 123 (2019) 161801 $5.3(3.2)\sigma$ Phys. Lett. B 793 (2019) 469 $5.5(4.3)\sigma$ arXiv:2004.10612

EW-VVjj production at 13TeV

VVjj	final states	$\sigma(VVjj\text{-}\mathrm{EW})/\mathrm{fb}$	$\sigma(VVjj\text{-}\text{QCD})/\text{fb}$	
$W^{\pm}W^{\pm}$	$\ell u \ell u j j$	4.28 ± 0.01	1.69 ± 0.02	Philipp Anger's thesis
W^+W^-	$\ell u \ell u j j$	15.57 ± 0.08	35.24 ± 0.13	Production cross-
ZZ	$\ell\ell u u j j$	0.39 ± 0.01	0.55 ± 0.01	section for EW and QCD VVjj production:
ZV	$\ell\ell j j j j$	0.98 ± 0.07	3.13 ± 0.22	-All results are
$Z\gamma$	$\ell\ell\gamma jj$	9.24 ± 0.02	71.28 ± 0.33	obtained from
WZ	$\ell u \ell \ell j j$	2.36 ± 0.01	7.19 ± 0.01	-Pre-VBS cuts
ZZ	$\ell\ell\ell\ell j j$	0.12 ± 0.01	0.21 ± 0.01	applied

NIN NO

ssWWjj

Source	Impact $[\%]$
Experimental	
Electrons	0.6
Muons	1.3
Jets and $E_{\rm T}^{\rm miss}$	3.2
b-tagging	2.1
Pileup	1.6
Background, statistical	3.2
Background, misid. leptons	3.3
Background, charge misrec.	0.3
Background, other	1.8
Theory modeling	
$W^{\pm}W^{\pm}jj$ electroweak-strong interference	1.0
$W^{\pm}W^{\pm}jj$ electroweak, EW corrections	1.4
$W^{\pm}W^{\pm}jj$ electroweak, shower, scale, PDF & α_s	2.8
$W^{\pm}W^{\pm}jj$ strong	2.9
WZ	3.3
Luminosity	2.4

上海交通大學 | 卡达道研究町 SHANGHAI JIAO TONG UNIVERSITY TSUNG-DAO Lee Institute

Source	Uncertainty [%]
WZjj-EW theory modelling	4.8
WZjj-QCD theory modelling	5.2
WZjj-EW and $WZjj$ -QCD interference	1.9
Jets	6.6
Pile-up	2.2
Electrons	1.4
Muons	0.4
b-tagging	0.1
MC statistics	1.9
Misid. lepton background	0.9
Other backgrounds	0.8
Luminosity	2.1
Total Systematics	10.7

arXiv:2004.10612

• Event yields:

Process	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$
EW ZZjj	20.6 ± 2.5	12.3 ± 0.7
$\operatorname{QCD} ZZjj$	77 ± 25	17.2 ± 3.5
$\operatorname{QCD} ggZZjj$	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- $\ell\ell$	_	21.4 ± 4.8
WZ	—	22.8 ± 1.1
Others	$3.2\pm~2.1$	1.2 ± 0.9
Total	114 ± 26	78.4 ± 6.2
Data	127	82

$$C = \frac{N_{detector-level}}{N_{FV-truth}} \ \sigma = \frac{N_{data} - N_{background}}{\mathcal{L} \times C}$$

• Cross-sections:

 The definition of fiducial regions are very similar with detector-level selections by using particle-level physics objects.

 Fiducial cross-sections for the inclusive production of the EW and QCD processes are measured separately in individual channels.

<i>lllljj</i> C factor	0.699 ± 0.031
<i>llvvjj</i> C factor	0.216 <u>+</u> 0.012

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\ell\ell\ell\ell jj$	$1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.03(\text{lumi})$	$1.14 \pm 0.04 (\text{stat}) \pm 0.20 (\text{theo})$
$\ell\ell u ujj$	$1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

• Theoretical uncertainties:

- PDF, QCD scale, α_s , parton showering (PS).

- Interference effect between the EW and QCD processes is 6.8%(2.3%) in *lllljj(llvvjj*) channel. Treat as an extra uncertainty in the EW signal predictions.

- **Generator modelling uncertainty:** estimated by comparing Sherpa with MadGraph5 _aMC@NLO 2.6.1 predictions at particle level.

Jing Chen Page . 22

Experimental uncertainties:

- luminosity: 1.7%.
- The momentum scale and resolution of leptons and jets, lepton reconstruction and selection efficiencies, trigger selection efficiency, the calculation of the E_T^{miss} soft-term, the pile-up correction, and the b-jet identification efficiency: 5-10%.
- Jet pile-up uncertainty.

× T ∩

โรงกาน

Ζγϳϳ

Source	Size [%]
Electron/photon calibration	± 0.3
Photon	± 0.3
Backgrounds	± 1.0
Electron	± 1.1
Flavour tagging	± 1.1
Muon	± 1.1
MC stat.	± 1.4
Pileup	± 2.6
Jets	\pm 4.7
QCD - $Z\gamma jj$ modelling	$^{+4.8}_{-4.3}$
EW - $Z\gamma jj \text{ modelling}$	$+5.7 \\ -4.6$
Data stat.	\pm 8.8
Total	+13.4 -12.6

$\gamma\gamma \rightarrow WW$

Source of uncertainty	Impact [% of the fitted cross section]
Experimental	
Track reconstruction	1.1
Electron energy scale and resolution, and efficiency	0.4
Muon momentum scale and resolution, and efficiency	0.5
Misidentified leptons, systematic	1.5
Misidentified leptons, statistical	5.9
Other background, statistical	3.2
Modelling	
Pile-up modelling	1.1
Underlying-event modelling	1.4
Signal modelling	2.1
WW modelling	4.0
Other background modelling	1.7
Luminosity	1.7
Total	8.9