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Motivation

* No doubt dark matter exists, but its constitution and
nature still unknown

* As no conclusive evidence of WIMP dark matter in
direct detection (up to now), we are motivated to
consider alternative DM candidates in both
theoretical and experimental aspects.
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* DM could span an enormous mass range

QCD axion WDM limit unitarity limit
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PBHs and their evaporation

For the first time, Zeldovich & Novikov discussed PBH in
1967, but their conclusion on the existence of PBHs was
negative (but wrong). Sov. Astron. 10, 602 (1967)

In 1974, Carr and Hawking showed that a black hole
formed from local collapse would not grow as fast as the
horizon. Mon. Not. R. astron. Soc. 168, 399 (1974)

The “smallness” of PBHs promotes Hawking to raise his
famous discovery that black holes radiate thermally with
a temperature Tpgy and evaporate on Nature 248, 30 (1974)
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PBHs lighter than ~101* g would have evaporated by
now.



e PBHs as DM and the constraints on the fraction of
DM in PBH: fPBH | M)
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The development of terrestrial facilities enables us to consider
the detection and constraint on PBHs: neutrino experiments

1912.01014, 2010.16053, 2106.02492, 2106.05013,
2110.00025, 2110.05637, 2108.05608, 2203.14979

Smaller PBH masses give harder spectra of the emitted
neutrinos peaked at ~4.2 Tpgy and maximized at 0(100) MeV
(comparable to diffuse supernova neutrlno background and
atmospheric neutrinos)
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Such energetic neutrinos can

boost light DM in the MW
Wei Chao, TL, Jiajun Liao, 2108.05608
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Why not boosted DM itself? It is possible form, <1 MeV

with Wei Chao’s private discussion



Light DM from PBH evaporation

* The PBHs emit Dirac DM with the number density

d>N 1 TI'(E,Mpgy)
dEdt 2mexp(E/kgTpgy) + 1

I': greybody factor (describing the probability of DM y
escaping the PBH gravitational well)

* |In principle, spinning PBHs would make the evaporation
faster and the spectrum becomes harder. We ignore the
spin of PBH.



e The DM flux is composed of the contributions of
both the PBHs in the Milky Way and the extragalactic
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* Light DM produced from PBHs gains energies peaked
at 0(10)~0(100) MeV and have ultra-relativistic
velocities



Detection through electron targets (1s10.10543)

Novel direct detection constraints on light dark matter

Torsten Bringmann! and Maxim Pospelov® ?
lDepﬂrt-me-nt- of Physics, University of Oslo, Box 1048, N-0371 Oslo, Norway
. 2 Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9, Canada
‘J'Depa-rtmen-t of Physics and Astronomy, University of Vicloria, Victoria, BC V&P 5C2, Canada
(Dated: June 2018)

All attempts to directly detect particle dark matter (DM) seattering on nuclei suffer from the partial
or total loss of sensitivity for DM masses in the GeV range or below. We derive novel constraints
from the inevitable existence of a subdominant, but highly energetic, component of DM generated
through collisions with cosmic rays. Subsequent scattering inside conventional DM detectors, as
well as neutrino detectors sensitive to nuclear recoils, limits the DM-nucleon scattering cross section
to be below 10~*! em? for both spin-independent and spin-dependent scattering of light DM.

* Considering the earth attenuation, the actual DM flux
reaching the detector is
Toy e’ it T=2/¢
dTddQ — (2my + T = Tdem)? dTdQ 19
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* Finally, the number of DM scattering per recoil
energy of electron T,

d3 j\& . | d? Q,-")d
_ j\/re dz 1dd PDG 1 Tp . 1 1d X
e K -

DM transfers energy to the electron target assuming

electrons at rest frame

1 s £ _ 1810.10543
Tr.rla:-:{-]"' y {:}{Tﬂ’- {Tl} o T‘] 1811.00520

: x)

D{(T.,Ty) =

N,: total number of free electrons in targets

dye: DM-electron scattering total cross section



e Super-K has performed the search of boosted DM for
T, > 100 MeV Super-K, 1711.05278

100 MeV < Fuis < 1.33 GeV 1.33 GeV < Euis < 20 GeV FEris = 20 GeV

Data -MC €440 (0.5 GeV) Data v-MC  €.4(5 GeV) Data 1v-MC  €,,(50 GeV)
FCEFV 15206  14858.1 97.7% 1908 5100.7 93.3% 118 1075 81.9%
& single ring 11367  10997.4 95.8% 2868  3161.8 93.3% 71 68.2 82.2%
& e-like 5655 55715 94.7% 1514 1644.2 93.0% 71 68.1 82.2%
& 0 decay-e 5049  5013.8 94.7% 1065  1207.2 93.0% 13 157 82.2%
& 0 neutrons C_ 4042 3992.9 93.0% 658 7726 91.3% 3 7.4 81.1%

e We take the total measured number of events in the
first energy bin, and place a conservative bound on
the PBHBDM by using

€ X i\"x < Ngk



e XenonlT and prospect (20 ton-yr)
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Results

* Parameters: Mpgpy, fppu, My, Oy
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The fpgy bound can be improved by the terrestrial experiments
The bounds from Super-K and XenonlT are complementary



Summary

 The evaporation of PBHs provides a source of

light boosted dark matter with energies
peaked at 0(10)~0(100) MeV.

e Such boosted dark matter can be searched at
terrestrial facilities.

 The bounds on DM-electron scattering cross
section and fppy can be improved.
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Thank youl!



