Observation of new structures in the J/ ψ J/ ψ mass spectrum at CMS

第三届粒子物理前沿研讨会 2022年7月22日,中山大学

Fully charmed tetraquaks at LHC

2022年7月9日,易凯

Zhen Hu

the Compact Solenoid detector

Lead tungstate

E/M Calorimeter (ECAL)

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

the Compact Solenoid detector

3.8T Superconducting Solenoid

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

•

____η coverage (track & muon): [-2.5,2.5]

HCAL

ECAL

Hadron

Bectromagneti

Lead tungstate E/M Calorimeter (ECAL) Floctron

Charged Hadron (e.g. Pion)

Neutral Hadron (e.g. Neutron)

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

Dimuon at CMS & trigger

- Muon system
 - High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ ψ
- Silicon Tracking detector, B=3.8T
 - $\Delta p_T/p_T \sim 1\%$ & excellent vertex resolution
- Special triggers for different analyses at increasing Inst. Lumi.

- μ p_T, (μμ) p_T, (μμ) mass, (μμ) vertex, and additional μ Zhen Hu July 22, 2022

Selected CMS contributions with low p_T muons

B physics at CMS

- vs RHIC
 - better resolution
 - CMS' 1st Y(1S,2S,3S) measurements in HI
 - additional detector capability
 - CMS' 1st secondary vertex meas. in HI (eg $b \rightarrow J/\psi$)
- vs ALICE
 - complementary acceptance (ALICE access low-pt)
 - CMS better resolution
- vs Tevatron experiments
 - extend kinematic (p_T,y) acceptance
- vs ATLAS
 - more flexible trigger, better resolution
- vs LHCb

Zhen Hu

- complementary acceptance, LHCb great particle ID
- higher luminosity

First X(3872) signal in PbPb

Nucl. Phys. Vol 1005 (2021)121781

CMS played the following leading roles

- First LHC experiment to see X(3872)
- First LHC experiment to see exotic hadron
- First LHC experiment to see X(3872) in PbPb data

7

Exotic hadron

QCD理论允许强子的夸克数不只是2或3 多夸克态 混杂态 胶子球 夸克数=2 +激 夸克数=0,多个 夸克数>=4 发胶子:qqg, 胶子gg, ggg … qqqg … g g g g

Zhen Hu

Zhen Hu

4c exotic meson

- First mention of 4c states at 6.2 GeV (1975)
 - Just one year after the discovery of J/ψ)

We expect at least three exotic mesons with hidden charm, $c\bar{c}(p\bar{p}-n\bar{n})$ [between 3.7~4.1 GeV], $c\bar{c}\lambda\bar{\lambda}$ [~4.1 GeV] and $c\bar{c}c\bar{c}$ [~6.2 GeV], to which we refer

(Received January 20, 1975)

• First calculation of 4c states (1981): Z. Phys. C 7 (1981) 317

 L	S	JPC	Mass (GeV)				(cc) ₆	$\overline{(CC)}_{6}*$
1	0 1 2	$ \begin{array}{c} 1^{} \\ 0^{-+}, 1^{-+}, 2^{-+} \\ 1^{}, 2^{}, 3^{} \end{array} $	6.55			S	J ^{PC}	Mass (GeV)
2	0 1 2	2 ⁺⁺ 1 ⁺⁻ , 2 ⁺⁻ , 3 ⁺⁻ 0 ⁺⁺ , 1 ⁺⁺ , 2 ⁺⁺ , 3 ⁺⁺ , 4 ⁺⁺	6.78	$\longleftarrow (cc)_{\underline{3}} * - (\overline{cc})_{\underline{3}}$	1 2	0	$1^{}$ 2++	6.82 7.15
3	0 1 2	3 2 ⁻⁺ , 3 ⁻⁺ , 4 ⁻⁺ 1 , 2 , 3 , 4 , 5	6.98		3	0	3	7.41

- Many recent theoretical studies on (cccc), (bbbb), (bbcc):
 - controversial on existence of bound states below $\eta_b \eta_b$ threshold;

consistent on existence of resonant states above $\eta_b\eta_b$ threshold.

$J/\psi J/\psi$ cross section at 7 TeV

J. High Energy Phys. 09 (2014) 094

Total cross section, assuming unpolarized prompt $J/\psi J/\psi$ pair production 1.49 ± 0.07 (stat.) ± 0.13 (syst.) nb

Different assumptions about the $J/\psi J/\psi$ polarization imply modifications to the cross section ranging from -31% to +27%.

We saw hints at Run I data Proposed three signal regions for Run II data

Blinded mass windows for Run II:

- 1. [6.3,6.6] GeV
- 2. [6.8,7.1] GeV
- 3. [7.2,7.8] GeV (for potential wide structure)

These mass windows will be windows for LEE for potential structures

Run I data will be ignored for significance calculation

CMS eventually decide to blind the whole region: [6.2, 7.8] GeV after LHCb released their result

The LHC is pushing the limit

CMS Peak Luminosity Per Day, pp

1902

THA

NNU

- Signal: $X \to J/\psi J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$
- Data: 135 *f b*⁻¹, taken in 2016, 2017 and 2018 LHC runs
- Signal MC samples:
 - $J^P = 0^+$ resonance
 - -- Generator: Pythia8, JHUGen
- Background MC samples:
 - Nonresonant single-parton scattering (NRSPS)
 - -- Generator: Pythia8, HelacOnia (next-to-next-to-leading order), Cascade (next-to-leading order)
 - Nonresonant double-parton scattering (NRDPS)
 - -- Generator: Pythia8

Event selections

Muon selection

- $p_T(\mu^{\pm}) > 2.0 \text{ GeV/c}$
- $|\eta(\mu^{\pm})| < 2.4$
- All muons are <u>soft</u>
 - For 2017-18 years: $p_T(\mu^{\pm}) > 3.5 \text{ GeV/c}$ for at least one $\mu^+\mu^-$ pair, which has $vtxprob(\mu^+\mu^-) > 0.5\%$ and 2.95 $< m_{\mu^+\mu^-} < 3.25 \text{ GeV}$

 J/ψ selection

- •2.95 < $m_{J/\psi}$ < 3.25 GeV
- • $p_T(J/\psi) > 3.5 \text{ GeV/c}$
- • $vtxprob(J/\psi) > 0.5\%$
- •Constrained $vtxprob(J/\psi) > 0.1\%$

 $\frac{J/\psi J/\psi \text{ selection}}{vtxprob(4\mu) > 0.5\%}$ • $vtxprob(J/\psi J/\psi) > 0.1\%$ • Proper HLT is fired in event

Multiple candidates

•Choose the best candidate with minimum $\left(\frac{M(J/\psi_1) - M(J/\psi_{PDG})}{\sigma(M(J/\psi_1))}\right)^2 + \left(\frac{M(J/\psi_2) - M(J/\psi_{PDG})}{\sigma(M(J/\psi_2))}\right)^2$ value if there are 4 muons in event, but more than one candidate (~0.2%) •Keep all candidates if there are more then 4 muons in event (~0.2%)

Baseline mass variable – invariant mass of two constrained J/ ψ candidates

J/ψ candidates

CMS background (BW0 + NRSPS + DPS)

- Most significant structure in first step is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - Inadequacy of our NRSPS model at threshold though one floating parameter?
 - BW0 parameters very sensitive to other model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...
- NRSPS+NRDPS+BW0 as our background

CMS model: 3 BWs + Background

	BW1 (MeV)	BW2 (MeV)	BW3 (MeV)
m	6552 ± 10	6927±9	7287± 19
Г	124± 29	122± 22	95± 46
Ν	474± 113	492±75	156± 56

- BW1 (6.5 σ) observation (> 5.7 σ with syst.)
- BW2[X(6900)] (9.4*σ*) -- confirmation
- BW3 (4.1 σ) -- evidence

Statistical significance only

CMS result with BW0 explicitly shown

1902

नसिति

NNU

Significance with systematics

Table 2. Systematic uncertainties on masses and widths, in view.						
Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS		< 1	< 1	3	3	4
NRSPS	3	1	1	18	15	17
feeddown shape	11	>1	1	25	8	6
momentum scaling	1	3	4	-	-	-
resolution	< 1	< 1	< 1	< 1	< 1	1
efficiency	< 1	< 1	< 1	1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
total	12	5	5	34	19	20

Table 2: Systematic uncertainties on masses and widths, in MeV.

- Investigated effects of systematics on local significance by a profiling procedure a discrete set of individual alternative signal and background hypotheses tested in minimization
 - Significant change: BW1 significance changed from 6.5σ to >5.7\sigma
 - No relative significance changes for BW2 and BW3

Significance with systematics

X(6900) reported by LHCb

- In 2020, LHCb reported X(6900) state in $J/\psi J/\psi$ final state, <u>Sci.Bull.65 (2020) 23</u>
- Tried two different models
 - Model I: background+2 auxiliary BWs+ $X(6900) \rightarrow$ poor description of 'dip' around 6.7 GeV
 - Model II: a "virtual" X(6700) to interfere with NRSPS background to account for dip
- LHCb agnostic on which one is to be preferred
- What happens if fit CMS data using LHCb models?

Try LHCb model 1

Background + 2 auxiliary BWs + X(6900)

Weighted candidates / (28 MeV/c ²) 180 140 170 170 170 170 170 170 170 17		T Data Total f Resona Thresh DPS NRSP: DPS-N NRSP:	it ancc old BW1 old BW2 VRSPS
6200	7000 <i>M</i>	$\frac{8000}{(MeV/c^2)}$	9000
	$1' - dI - J/\psi$		

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	m(6900)	Γ(6900)	5
LHCb [15]	Model I	unrep.	unrep.	$6905\pm11\pm7$	$80\pm19\pm33$	
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24	

- CMS Data shows a shoulder before BW1
- CMS shoulder helps make BW1 distinct
- Does not describe well dips

X(6900) parameters are in good agreement with LHCb LHCb did not give parameters for another 2 BWs

- CMS vs LHCb comparisons:
 - $135/9 \approx 15X$ (int. lum.)
 - $(5/3)^4 \approx 8X$ (muon acceptance due to pseudo-rapidity range)
 - Higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
 - Similar number of final events, but DPS suppressed

Try LHCb model 2

DPS + X(6900) + "X(6700)" interferes with NRSPS

- X(6900) parameters are consistent
- CMS obtained larger amplitude and natural width for BW1
- CMS's X(6600) is 'eaten' –does not describe X6600 and below
- Does not describe X(7200) region

All CMS fits presented are not very good: ...other interference scenarios are under study in CMS

Summary

• CMS found 3 significant structures using 135 *fb*⁻¹ 13 TeV data <u>https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-003/index.html</u>

M[BW1] = $6552 \pm 10 \pm 12$ MeV	$\Gamma[BW1] = 124 \pm 29 \pm 34 \text{ MeV}$	>5.7 σ
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	$\Gamma[BW2] = 122 \pm 22 \pm 19 \text{ MeV}$	>9.4 o
M[BW3] = 7287 \pm 19 \pm 5 MeV	$\Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV}$	>4.1 o

- BW2 consistent with X(6900) reported by LHCb
- Two new structures, provisionally named as X(6600) [BW1], X(7300) [BW3]
- A family of structures which are candidates for all-charm tetra-quarks!
- Dips in data show possible interference effects under study
- More data/knowledge needed to understand nature of near threshold region
- All-heavy quark exotic structures offer system easier to understand
- A new window to understand strong interaction

- ~"清华-南师"CMS组(2019-2022)
 - 4 faculties:易凯,胡震,王义,Gerry Bauer
 - 3 postdocs:张敬庆, Muhammad Ahmad, Samet Lezik
 - 10 grads:刘锦枫,温宏伟,王地,崔志鹏,梁正臣,王晰宁,王雨潇,张顺亮,陈亮亮,闫豆豆
 - ~30 undergrads
 - 3 engineers and technicians
- ・ 现任CMS实验二级管理职位1人:
 - Muhammad Ahmad (PPD DQM)
- ・ 现任CMS实验三级管理职位2人:
 - 胡震(BPH P&P), Samet Lezik (DPG Tracking)
- 曾任CMS实验二级管理职位3人次:
 - 胡震 (PPD PdmV), Jordan Martins (PPD PdmV), Jordan Martins (BPH VFS)
- 曾任CMS实验三级管理职位7人次:
 - 易凯 (B物理 Production), (Quarkonium), (Spectroscopy)
 - 胡震 (PPD PdmV), Muhammad Ahmad (PPD PdmV), 刘锦枫 (PPD PdmV), Jordan Martins (PPD PdmV)

Physics Performance & Datasets (PPD) organisation

Physics Performance & Datasets (PPD) Organisation as of 05/22

NNU

硬件贡献——GEM, MTD

- 在北大帮助下参加了GEM探测器升级
 - 得到清华理科发展双E基金资助:已先期贡献50万材料费
 - 2019、2020、2021、2022年参加过多批电子学版的生产和检测

- 参加了MTD探测器升级
 - 得到清华物理系科研发展金资助:已先期贡献50万core contribution
 - 学生长期base在CERN,参加MTD研发和装配工作
 - 已经在清华物理系争取到新的实验室空间,新的设备费资助

硬件贡献— HGCal

- 在高能所帮助下参加了HGCal探测器升级
 - 得到清华物理系科研发展金资助:已先期贡献设备30万+core contribution 100万
 - 参加高能所站点的生产和测试工作
 - QA/ QC Test before Assembly
 - Module Assembly on Gantry

第四届重味物理与量子色动力学研讨会 湖南大学,长沙

Observation of structures in J/ψJ/ψ mass spectrum at CMS 张敬庆 2022年7月29日(周五), 15:45

Significance with systematics

- To include systematics, alternative resonance/background shapes applied in the fit.
- Calculate signal- and null-hypothesis *NLL_syst* including systematic using:

 $NLL_(syst-sig) = Min\{NLL_(nom-sig), NLL_(alt-i-sig)+0.5+0.5\cdot\Delta dof\}$

- □ *NLL_(nom-sig*): the NLL of nominal 'signal hypothesis' fit.
- \square *NLL_(alt-i-sig)*: the NLL of i-th alternative fit of 'signal hypothesis'
- $NLL_(syst-null) = Min\{NLL_(nom-null), NLL_(alt-j-null)+0.5+0.5 \cdot \Delta dof\}$
- Significance including systematics as usual from *NLL_(syst-null)-NLL_(syst-sig)*

	Significance with syst.
BW1	5.7σ
BW2	no sensible changes
BW3	no sensible changes

Line shape

• S-wave relativistic Breit-Wigner (used in default fit):

$$BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)}, \text{ where } \Gamma(m) = \Gamma_0 \frac{qm_0}{q_0 m},$$

q is the momentum of a daughter in the mother particle rest frame; q_0 means the value at peak position ($m = m_0$).

• NRSPS and NRDPS:

 $f_{NRSPS}(x, x_0, \alpha, p_1, p_2, p_3)$

$$= (x - x_0)^{\alpha} \cdot \left(1 - \left(\frac{1}{(15 - x_0)^2} - \frac{p_1}{10}\right) \cdot (15 - x)^2\right) \cdot \exp\left(-\frac{(x - x_0)^{p_3}}{2 \cdot p_2^{p_3}}\right),$$

$$f_{NRDPS}(x, a, p_0, p_1, p_2) = \sqrt{x_t} \cdot \exp(-a \cdot x_t) \cdot (p_0 + p_1 \cdot x_t + p_2 \cdot x_t^2),$$

where $x_0 = 2m_{J/\psi}, x_t = x - x_0$

Steps to identify structures in $J/\psi J/\psi$ mass spectrum

- Null-hypothesis (initial baseline model): NRSPS+NRDPS
- Add potential structures to baseline model
 - Add most prominent structure to baseline model
 - Calculate its local significance
 - Keep in baseline only if > 3σ significance
 - Repeat until no more > 3σ structures

Zhen Hu

1911-

Fig. 4. Invariant mass spectra of weighted di- J/ψ candidates in bins of $p_T^{\text{di-}J/\psi}$ and overlaid projections of the $p_T^{\text{di-}J/\psi}$ -binned fit with model I.

