

凌家杰(中山大学) 第三届粒子物理前沿研讨会 2022/07/23

The 3-neutrino Mixing

B. Pontecorvo, Z. Maki, M. Nakagawa, S. Sakata, E. Majorana

Current Status of PMNS Parameters

NuFIT 4.0	θ ₁₂ (°)	θ ₂₃ (°)	θ ₁₃ (°)	δ _{CP} (°)	$\Delta m^2_{21} \\ (\times 10^{-5} \mathrm{eV}^2)$	$\Delta m^2_{32} \ (imes 10^{-3} { m eV}^2)$
Normal	$33.44_{-0.74}^{+0.77}$	$49.2^{+0.9}_{-1.2}$	$8.57^{+0.12}_{-0.12}$	197^{+27}_{-24}	$7.42^{+0.21}_{-0.20}$	$2.443^{+0.026}_{-0.028}$
Inverted	$33.45_{-0.75}^{+0.78}$	$49.3^{+0.9}_{-1.1}$	$8.60^{+0.12}_{-0.12}$	282^{+26}_{-30}	$7.42_{-0.20}^{+0.21}$	$-2.498^{+0.028}_{-0.028}$
Relative 1σ precision	2.3%	2.0%	1.4%	13.2%	2.7%	1.1%

JHEP 09 (2020) 178

Well measured: θ_{12} , θ_{13} , Δm_{21}^2 , $|\Delta m_{32}^2|$ Not-so-well measured: θ_{23} Octant, δ_{CP} , neutrino mass ordering (sign of Δm_{32}^2)

• $\theta_{23} > \pi/4$ is mildly preferred with $\Delta \chi^2 = 0.53$ (2.2 with SK – atm)

凌家杰 (中山大学)

• Normal mass ordering is slightly preferred with $\Delta \chi^2 = 2.7$ (7.1 with SK – atm)

Open Questions of Massive Neutrinos

- <u>What's the neutrino mass</u> ordering?
- <u>Are neutrinos responsible for</u> <u>the matter anti-matter</u> <u>asymmetry?</u>
- Are neutrinos Dirac or Majorana particles?
- What is the neutrino mass?
- Do sterile neutrinos exist?
- Why neutrino mass is so tiny?

Reactor Antineutrino Oscillation

$$P_{\alpha\beta} = |\langle v_{\beta} | v_{\alpha}(t) \rangle|^{2} = \delta_{\alpha\beta} - 4 \sum_{i < j}^{3} Re[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}] \sin^{2}\Delta_{ij} + 2 \sum_{i < j}^{3} Im[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}] \sin 2\Delta_{ij}$$

$$P(\bar{v}_{e} \rightarrow \bar{v}_{e}) = 1 - \sin^{2} 2\theta_{13} (\cos^{2} \theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \theta_{12} \sin^{2} \Delta_{32}) - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}$$

$$\approx 1 - \frac{\sin^{2} 2\theta_{13} \sin^{2} \Delta_{ee}}{\cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}}$$

$$A_{ij} = \Delta m_{ij}^{2} \frac{L}{4E}$$
Immune to CP violation and matter effects
$$\int D_{aya} B_{ay} N_{ear}$$

$$D_{aya} B_{ay} Far$$

$$\int D_{aya} B_{ay} Far$$

$$\int UNO - \int CK KamLAND - KamLAND$$

$$\int UNO - \int CK KamLAND - \int CK Kam$$

凌家杰(中山大学) 第三届粒子物理前沿研讨会

<u>v</u>

Source: Pure $\bar{\nu}_e$ from cascade of beta decays

- ~ 200 MeV / fission
- ~ 2 x 10²⁰ $\bar{\nu}_e$ /GW_{th}/Sec (1/5 above IBD threshold)_{0.9}

The Daya Bay and JUNO Site

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Operational	Operational
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	9.2 GW
700 m J 5	Kaiping overburden UNO 3 km	Control of the second s	Iang Zhou Shen Zhe Mara Mara Mara Mara	Abbelow An An An An An An An An An An An An An	<section-header></section-header>
凌家杰	(中山大学)	第二	三届粒子物理	里前沿研讨会	7

Far Hall 1540 m from Ling Ao I 1910 m from Daya Bay 324 m overburden

Relative Measurement: 3 Experimental Halls (EH) 8 "identical" antineutrino detectors (AD)

EH1

(AD-1, 2)

Entrance

Daya Bay Layout

EH3 (AD-4, 5, 6, 7)

> Ling Ao Near Hall 470 m from Ling Ao I 558 m from Ling Ao II 100 m overburden

> > EH2 (AD-3, 8)

Daya Bay Near Hall 363 m from Daya Bay 93 m overburden

Daya Bay Cores

Ling Ao II Cores

17.4 GW_{th} power
 8 operating detectors
 160 t total target mass

Antineutrino Detector (AD) System

凌家杰(中山大学)

5.5 Million nGd IBD Candidates

Prompt Energy Spectra

Rate+Spectra Oscillation Results

Precision Measurements

light sterile neutrino oscillation

- A minimum extension of the 3-v model: 3(active) + 1(sterile)-v model
- Search for a higher frequency oscillation pattern besides $|\Delta m^2_{ee}|$

凌家杰 (中山大学)

Sterile Neutrino Search

PRL 125, 071801 (2020)

- Data is consistent with 3-v model; No light sterile neutrino signal observed
- Consistent results from Feldman-Cousins and CLs methods

The most stringent upper limit for light sterile neutrinos ($\Delta m^2 < 0.2 \text{ eV}^2$)

凌家杰 (中山大学)

凌家杰(中山大学)

Joint Sterile Neutrino Searches

• The combined results can exclude the LSND and MiniBooNE signal region at $\Delta m^2_{41} < 5 \text{ eV}^2$ at 90% C.L.

Neutrino Oscillation at Jiangmen Underground Neutrino Observatory (JUNO)

S.T. Petcov et al., PLB533(2002)94
S.Choubey et al., PRD68(2003)113006
J. Learned et al., PRD78, 071302 (2008)
L. Zhan, Y. Wang, J. Cao, L. Wen, PRD78:111103, 2008, PRD79:073007, 2009
J. Learned et al., arXiv:0810.2580
Y.F Li et al, PRD 88, 013008 (2013)

凌家杰 (中山大学)

JUNO Detector Design

	KamLAND	Borexino	Daya Bay	JUNO
LS Mass [kton]	1	0.278	~0.04 x 8	20
E resolution@ 1 MeV	6%	5%	8%	3%
Photo-coverage	34%	30%	12%	77%
E calibration	1.4%	1%	0.5%	1%

Neutrino Mass Ordering (NMO)

$$P(\bar{v}_{e} \rightarrow \bar{v}_{e}) = 1 - \cos^{4}\theta_{13}\sin^{2}2\theta_{12}\sin^{2}\Delta_{21} - \sin^{2}2\theta_{13}(\cos^{2}\theta_{12}\sin^{2}\Delta_{31} + \sin^{2}\theta_{12}\sin^{2}\Delta_{32}) = 1 - \cos^{4}\theta_{13}\sin^{2}2\theta_{12}\sin^{2}\Delta_{21} - 2\sin^{2}\theta_{13}\cos^{2}\theta_{13} + 2\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sqrt{1 - 4\sin^{2}\theta_{12}\cos^{2}\theta_{12}\sin^{2}\Delta_{21}}\cos(2\Delta_{32} \pm \phi_{ee}) + : \text{Normal} + 2\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sqrt{1 - 4\sin^{2}\theta_{12}\cos^{2}\theta_{12}\sin^{2}\Delta_{21}}\cos(2\Delta_{32} \pm \phi_{ee}) + : \text{Normal} - : \text{Inverted}$$

$$\int 0 + \frac{100}{9} + 2\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sqrt{1 - 4\sin^{2}\theta_{12}\cos^{2}\theta_{12}\sin^{2}\Delta_{21}}\cos(2\Delta_{32} \pm \phi_{ee}) + : \text{Normal} + : \text{Normal} + 2\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sqrt{1 - 4\sin^{2}\theta_{12}\cos^{2}\theta_{12}\sin^{2}\Delta_{21}}\cos(2\Delta_{32} \pm \phi_{ee}) + : \text{Normal} +$$

The degeneracy of NMO can be broken with the reactor neutrino energy spectrum when the detector baseline > \sim 50 km.

凌家杰(中山大学)

Sensitivity of NMO Determination

Event type	Rate (per day)	Rate uncertainty (relative)	Shape uncertainty
IBD candidates	60	_	
Geo-vs	1.1	30%	5%
Accidental signals	0.9	1%	negligible
Fast-n	0.1	100%	20%
⁹ Li– ⁸ He	1.6	20%	10%
${}^{13}C(\alpha, n){}^{16}O$	0.05	50%	50%

JUNO MO sensitivity with 6 years' data assuming full reactor power

	Size	Δχ² _{MO}
Ideal	52.5 km	+16
Core distr.	Real	-3
DYB & HZ	Real	-1.7
Spectral Shape	1%	-1
B/S (rate)	6.3%	-0.6
B/S (shape)	0.4%	-0.1

NMO Sensitivity with External ν_{μ} Constraints

 $\Delta m^2_{\mu\mu} = sin^2 \theta_{12} \Delta m^2_{31} + cos^2 \theta_{12} \Delta m^2_{32} + cos \delta_{CP} sin \theta_{13} sin 2\theta_{12} tan \theta_{23} \Delta m^2_{21}$

Sensitivity with 100k events (20k ton LS + 6 years with $26GW_{th}$ reactor power)

- 3% energy resolution@1 MeV, <1% energy calibration
- $\overline{\Delta \chi^2} > 9$ ($\overline{\Delta \chi^2} > 16$ with external 1% | $\Delta m^2_{\mu\mu}$ | constraint)

凌家杰 (中山大学)

Sensitivity to NMO and CPV

凌家杰 (中山大学)

Precision Measurement at JUNO

		Δm_{21}^2	$ \Delta m_{31}^2 $	$\sin^2 \theta_{12}$	$\sin^2 \theta_{13}$	$\sin^2 \theta_{23}$	δ
Current presiden	Dominant Exps.	KamLAND	T2K	SNO+SK	Daya Bay	$NO\nu A$	T2K
current precision	Individual 1σ	2.4%	2.6%	4.5%	3.4%	5.2%	70%
	Nu-FIT 4.0	2.4%	1.3%	4.0%	2.9%	3.8%	16%

Probing the unitarity of U_{PMNS} to ~1%, more precise than CKM matrix elements!

Unitarity Conditions

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$\begin{split} |U_{\alpha 1}^{3\nu}|^2 + |U_{\alpha 2}^{3\nu}|^2 + |U_{\alpha 3}^{3\nu}|^2 &= 1, \quad \alpha = e, \mu, \tau, \\ |U_{ei}^{3\nu}|^2 + |U_{\mu i}^{3\nu}|^2 + |U_{\tau i}^{3\nu}|^2 &= 1, \quad i = 1, 2, 3, \\ U_{\alpha 1}^{3\nu}U_{\beta 1}^{3\nu,*} + U_{\alpha 2}^{3\nu}U_{\beta 2}^{3\nu,*} + U_{\alpha 3}^{3\nu}U_{\beta 3}^{3\nu,*} &= 0, \quad \alpha, \beta = e, \mu, \tau, \quad \alpha \neq \beta, \\ U_{ei}^{3\nu}U_{ej}^{3\nu,*} + U_{\mu i}^{3\nu}U_{\mu j}^{3\nu,*} + U_{\tau i}^{3\nu}U_{\tau j}^{3\nu,*} &= 0, \quad i, j = 1, 2, 3, \quad i \neq j. \end{split}$$

凌家杰 (中山大学)

Global Neutrino Data

Various neutrino experimental data can provide constraints on the different neutrino mixing elements

- Different energy scale
- Different baseline
- Different systematics

Types	Exps	Measurements		
MBL Reactor	RENO, Daya Bay	$A U_{2} ^{2}(U_{2} ^{2}+ U_{2} ^{2})$		
	Double Chooz	$4 0_{e3} (0_{e1} + 0_{e2})$		
LBL Reactor	KamLAND	$4 U_{e1} ^2 U_{e2} ^2$		
Solar	SNO	$ U_{e2} ^2$		
LBL Accelerator	$NO_{\rm W}A$ T2K	$A U_{2} ^{2}(U_{1} ^{2} + U_{2} ^{2})$		
$(u_{\mu} ightarrow u_{\mu})$	$\mathbf{NOVA}, \mathbf{12R}$	$4 U\mu_3 (U\mu_1 + U\mu_2)$		
LBL Accelerator	$NO_{\rm W}A$ T2K	$A \Re [U_{2} U^{*} (U_{1} U^{*} + U_{2} U^{*})]$		
$(u_{\mu} ightarrow u_{e})$	$\mathbf{NOVA}, \mathbf{12R}$	$45t[0_{e3}0_{\mu3}(0_{e1}0_{\mu1} + 0_{e2}0_{\mu2})]$		
LBL Accelerator	$OPER \Delta$	$A\Re[U_{2}U^{*}(U_{1}U^{*} + U_{2}U^{*})]$		
$(u_{\mu} ightarrow u_{ au})$	OI EITA	$\left[-\frac{43}{20} \left[0 \tau_3 0 \mu_3 (0 \tau_1 0 \mu_1 + 0 \tau_2 0 \mu_2) \right] \right]$		

凌家杰 (中山大学)

Unitarity Triangle

JHEP01 (2021) 124

凌家杰 (中山大学)

Unitarity Test

- Electron-type neutrinos have the best unitarity constraints due to large data sample
- Tau-type neutrinos are very limited by the experimental data

凌家杰(中山大学)

Summary

- Daya Bay has made the most precise measurements on $\sin^2 2\theta_{13}$ and $|\Delta m_{32}^2|$ with 2.8% and 2.3% precision
- Daya Bay set the most stringent upper limit for light sterile neutrino with $\Delta m^2_{41} < 0.2 \text{ eV}^2$
 - A joint fit with MINOS/MINOS+ is able to exclude most of LSND/MiniBooNE signal region
- JUNO can measure NMO with 3σ sensitivity with 6 years
 - boost to $>5\sigma$ with accelerator experiments