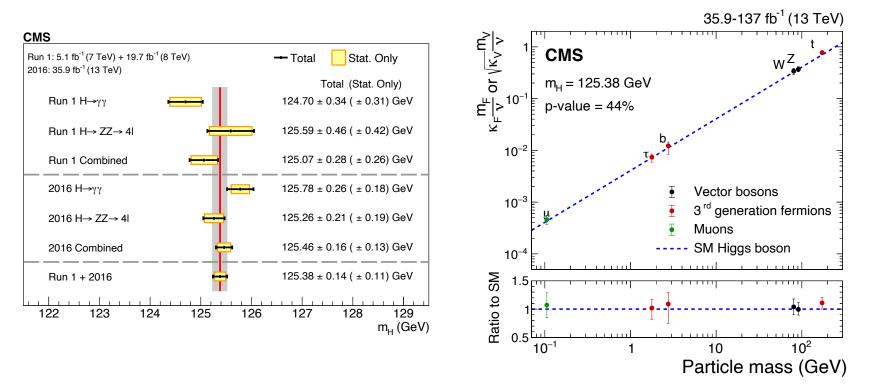


Constraining the Higgs-charm Yukawa coupling in the CMS experiment

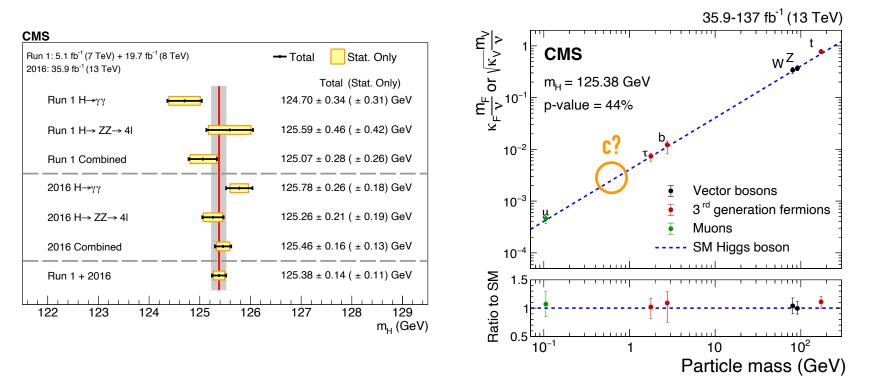
曲慧麟 (CERN)

中山-北大联合高能物理青年论坛 2022.05.18

Introduction



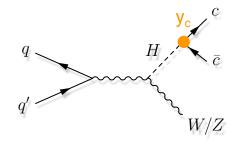
Discovery of the Higgs boson in 2012: A new chapter of particle physics

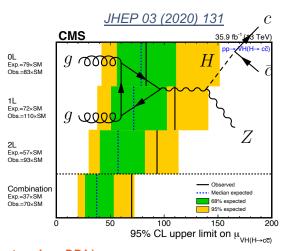

Understanding the Higgs boson

Tremendous progress in our understanding of the Higgs boson in the past ten years

How charming is the Higgs boson?

Tremendous progress in our understanding of the Higgs boson in the past ten years

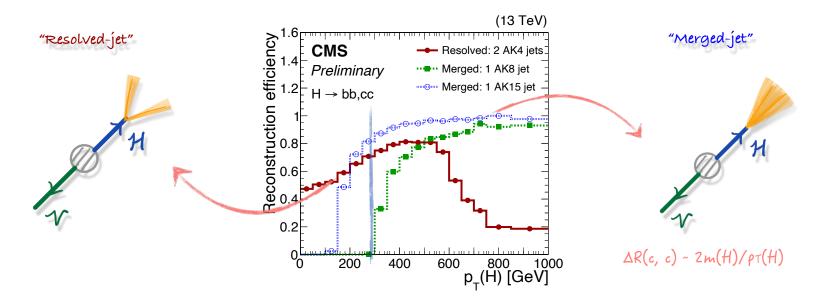



Direct search for $H \rightarrow cc$

- Search for $H \rightarrow cc$ decays: directly sensitive to y_c , but very challenging
 - small branching fraction (~3%) vs. large backgrounds (analytic contribution \sim

g wood

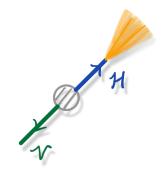
- charm quark identification is the key
- Exploit associated VH production (V = W, Z)
 - three channels: $Z \rightarrow vv$ (0L), $W \rightarrow \ell v$ (1L), $Z \rightarrow \ell \ell$ (2L) [$\ell = e, \mu$]
- Main backgrounds
 - V + jets, single and pair production of top quarks, dibosons
 - VH(H \rightarrow bb): small but largely irreducible
- Baseline event selections
 - (high-p_T) vector boson recoiling against a Higgs boson candidate
 - veto events with high jet multiplicity to suppress tt contribution (0L & 1L)
- Previous result (36 fb⁻¹): [JHEP 03 (2020) 131]
- Today: result with the full Run 2 data set (138 fb⁻¹) <u>arXiv:2205.05550</u> (submitted to PRL)



Corresponding ATLAS analysis: <u>arXiv:2201.11428</u>. See also recent LHC seminar by A. Chisholm.

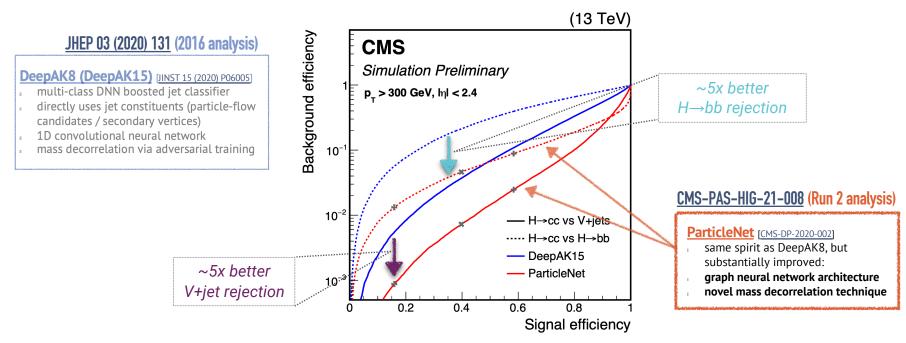
Analysis overview

Two complementary approaches for Higgs boson candidate reconstruction


Resolved-jet topology

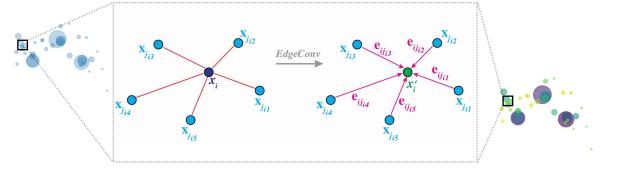
- reconstructs $H \rightarrow cc$ decay with two small-R jets (R=0.4, "AK4")
- probes the bulk (>95%) of the signal phase space

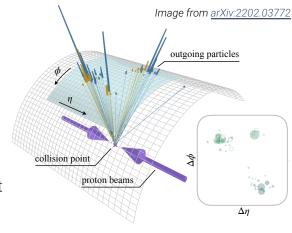
Merged-jet topology


- reconstructs H → cc decay with one large-R jets (R=1.5, "AK15")
- small signal acceptance (<5%) but higher purity
- better exploits the correlation between the two charm quarks

Merged-jet topology

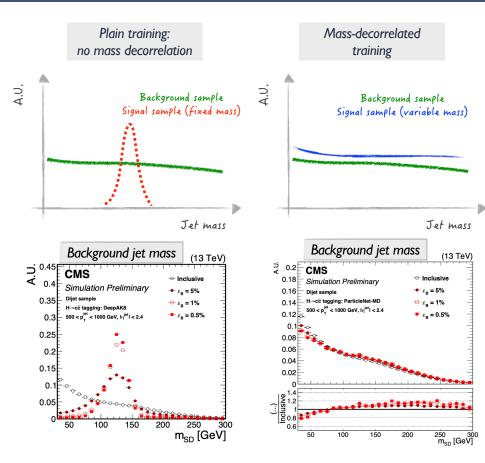
$H \rightarrow cc$ identification


- Merged-jet topology: Higgs boson candidate reconstructed via a single large-R jet ($p_T > 300$ GeV)
- \Box A major improvement: **ParticleNet** tagger used to identify $H \rightarrow cc$ decay



>2x improvement in the final sensitivity

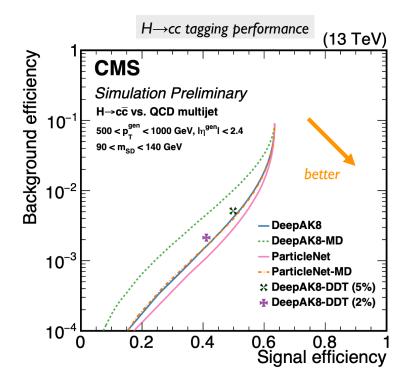
ParticleNet architecture


- New jet representation: "particle cloud"
 - treating a jet as an unordered set of particles, distributed in the $\eta-\phi$ space
- □ ParticleNet [H. Qu and L. Gouskos, <u>Phys.Rev.D 101 (2020) 5, 056019</u>]
 - graph neural network architecture adapted from DGCNN [arXiv:1801.07829]
 - permutation-invariant architecture leads to significant performance improvement

collision eventjet reconstructionPerformance on top quark tagging benchmark
[SciPost Phys. 7, 014 (2019)] $1/\varepsilon_b$ at $\varepsilon_s = 30\%$ ResNeXt-50 1147 ± 58 P-CNN 759 ± 24 PFN 888 ± 17 ParticleNet-Lite 1262 ± 49 ParticleNet 1615 ± 93

Mass decorrelation

CMS-DP-2020-002


"Mass sculpting": background jet mass shape becomes similar to signal after tagger selection

□ New approach to prevent mass sculpting

- using a special signal sample for training
 - hadronic decays of a spin-0 particle X
 - $X \to bb, X \to cc, X \to qq$
 - not a fixed mass, but a flat mass spectrum
 - m(X) ∈ [15, 250] GeV
- allows to easily reweight both signal and background to a \sim flat 2D distribution in (p_T, mass) for the training

□ Signal and background have the same (~flat) mass spectrum, thus no sculpting will develop in the training

Mass decorrelation (II)

"Mass sculpting": background jet mass shape becomes similar to signal after tagger selection

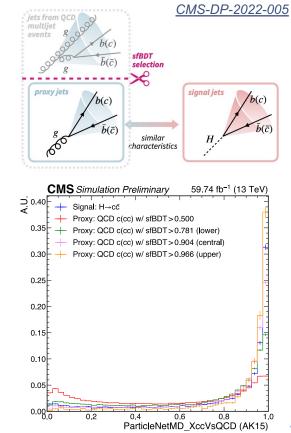
New approach to prevent mass sculpting

- using a special signal sample for training
 - hadronic decays of a spin-0 particle X
 - $X \rightarrow bb, X \rightarrow cc, X \rightarrow qq$
 - not a fixed mass, but a **flat mass spectrum**
 - m(X) ∈ [15, 250] GeV
- allows to easily reweight both signal and background to a \sim flat 2D distribution in (p_T, mass) for the training

 Performance loss due to mass decorrelation greatly reduced compared to the previous approach (DeepAK8-MD, based on "adversarial training")

Calibration of the cc-tagger

Need to measure ParticleNet cc-tagging efficiency in data


- no pure sample of $H \rightarrow cc$ jets (or even $Z \rightarrow cc$) in data
- using g \rightarrow cc in QCD multi-jet events as a proxy

Difficulty: select a phase-space in $g \rightarrow cc$ that resembles $H \rightarrow cc$

- solution: a **dedicated BDT** developed to distinguish **hard 2-prong splittings** (*i.e., high quark contribution to the jet momentum*) from **soft cc radiations** (*i.e., high gluon contribution to the jet momentum*)
- also allows to adjust the similarity between proxy and signal jets
 - by varying the sfBDT cut treated as a systematic uncertainty

Perform a fit to the secondary vertex mass shapes in the "passing" and "failing" regions simultaneously to extract the scale factors

- three templates: cc (+ single c), bb (+ single b), light flavor jets
- □ Derived cc-tagging scale factors typically 0.9−1.3
 - corresponding uncertainties are 20–30%

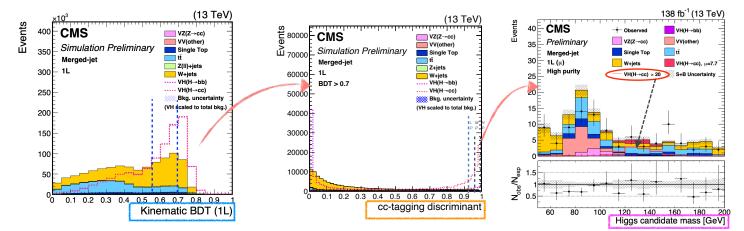


Large-R jet mass regression

Jet mass: one of the most powerful observable to distinguish signal and backgrounds CMS DP-2021/017

New ParticleNet-based regression algorithm to improve the large-R jet mass reconstruction

- training setup similar to the ParticleNet tagger; the regression target:
 - signal (X \rightarrow bb/cc/qq): generated particle mass of X [flat spectrum in 15 250 GeV]
 - background (QCD) jets: soft drop mass of the particle-level jet

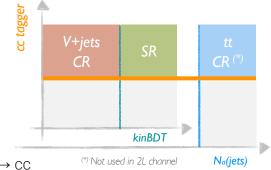


20 – 25% improvement in the final sensitivity

Analysis strategy

Factorized approach for analysis design

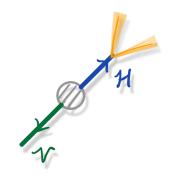
- event-level kinematic BDT developed in each channel to better suppress main backgrounds (V+jets, tt)
 - using only event kinematics, no intrinsic properties (e.g., mass/flavor) of the large-R jet
- ParticleNet cc-tagger then used to define 3 cc-flavor enriched regions and reject light/bb-flavor jets
- finally: fit to the ParticleNet-regressed large-R jet mass shape for signal extraction
- □ Kinematic BDT, ParticleNet cc-tagger and regressed jet mass largely independent of each other
 - allowing for a simple and robust strategy for background estimation and signal extraction


Background estimation

Normalizations of main backgrounds estimated via dedicated data control regions (CRs)

- V+jets CR: use the low kinematic BDT region
- tt CR (0L & 1L): invert the cut on the number of additional small-R jets (i.e., $N_{aj} \ge 2$)
- free-floating parameters scale the normalizations in CRs and signal regions (SRs) simultaneously

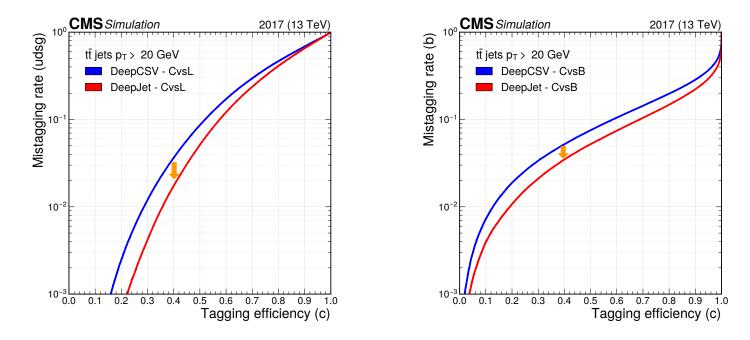
CRs designed to have similar jet flavor composition as the SR


- flavor-independent kinematic BDT + same cc-tagging requirement in CRs as in SR
- allows to correct cc-tagging efficiency for backgrounds directly from data
- cc-tagging SFs only needed for the signal VH(H \rightarrow cc) process (and VZ(Z \rightarrow cc))
 - conservative uncertainty (2x/0.5x) for the misidentification of $H(Z) \rightarrow bb$ as $H(Z) \rightarrow cc$

\Box Minor backgrounds (single top, dibosons, VH(H \rightarrow bb)) estimated from simulation

dibosons: applying differential NNLO QCD + NLO EW corrections as a function of p_T(V) [JHEP 2002 (2020) 087]

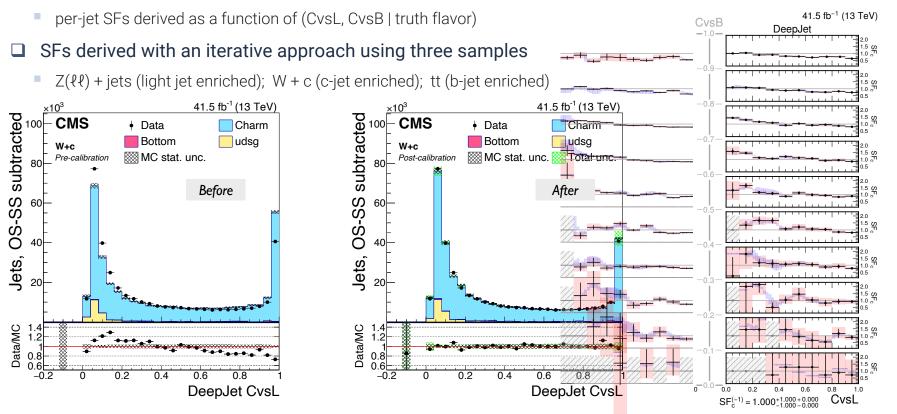
Resolved-jet topology



Charm quark identification

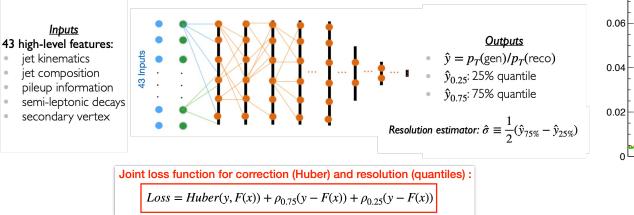
Resolved-jet topology: Higgs boson candidate reconstructed with two small-R jets

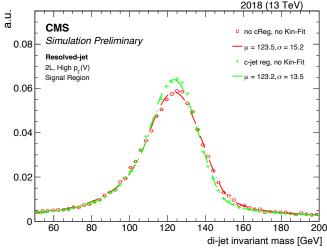
JINST 17 (2022) P03014


- Charm quark jet identification: **DeepJet** algorithm
 - ~2x (~40%) improvement in light (b) jet rejection at 40% c jet efficiency compared to DeepCSV

Charm tagging calibration

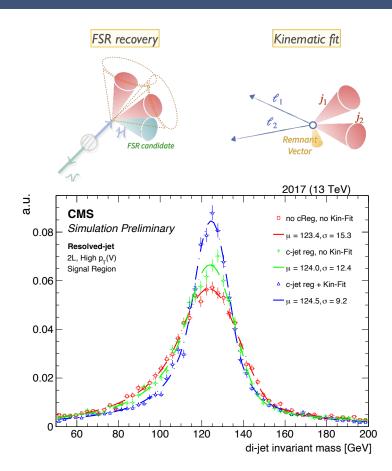
JINST 17 (2022) P03014


Novel calibration method to correct the entire distributions of the c-tagging discriminants

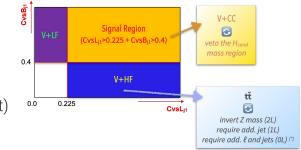


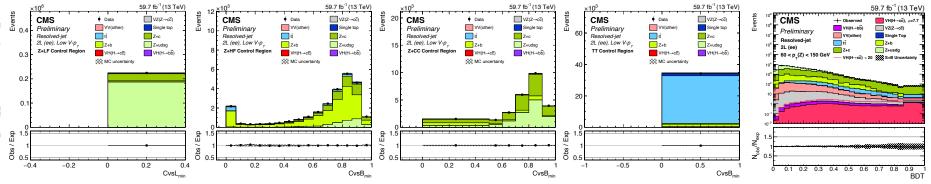
Charm jet energy regression

Dedicated jet energy regression algorithm developed to improve the c-jet energy scale and resolution


- based on the b jet energy regression [Comput.Softw.Big Sci. 4 (2020) 10] used in several CMS $H \rightarrow bb$ analyses
- re-trained for c jets instead of b jets
 - c jets collected from $W \rightarrow cx$ decay in tt MC events
- provides simultaneous estimation of the c jet energy and its resolution
 - both used as inputs to the signal extraction BDT

Higgs boson candidate reconstruction

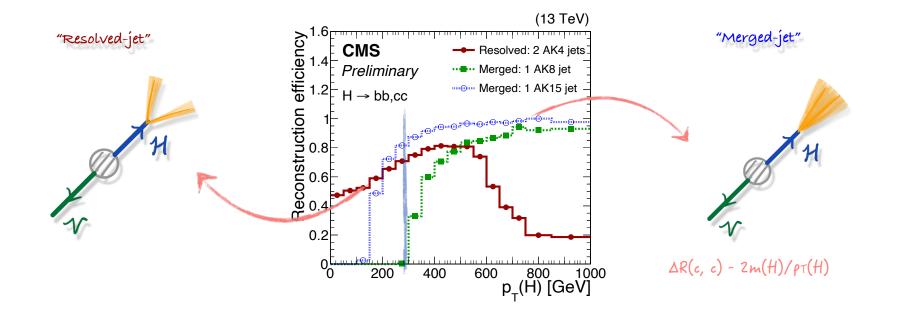

- □ Higgs boson candidate reconstructed using the two small-R jets with highest CvsL scores
 - To improve the Higgs candidate mass resolution:
 - recovery of final state radiations (FSR)
 - additional jets within $\Delta R < 0.8$ from either of the two selected jets are included in the calculation of the Higgs candidate's 4-momentum
 - improves the Higgs mass resolution by a few percent
 - new DNN-based c-jet energy regression
 - ~20% improvement in Higgs candidate mass resolution
 - improved kinematic fit in the 2L channel
 - better reconstruction of the Higgs candidate's 4momentum using constraints from the Z → {{ system
 - up to 30% improvement in Higgs candidate mass resolution


Signal extraction strategy

Event-level BDT trained in each channel to maximize the signal vs background separation

- inputs: event kinematics, Higgs candidate properties, c-tagging discriminants
 - + kinematic fit variables in 2L
- Background estimation
 - dedicated CRs to constrain the normalizations of main backgrounds (V + jets, tt)
 - V + jets split based on flavor: V + b, V + c, V + udsg

□ Simultaneous fit of SRs (BDT shapes) and CRs (c-tagging discriminants) for signal extraction



Results

Combination of the two topologies

The two topologies are made orthogonal via the presence of large-R jet with $p_T > 300$ GeV

 p_T threshold chosen to maximize expected sensitivity

Uncertainties

□ Systematic uncertainties correlated between topologies, except:

- background normalizations for V+jets and tt
- charm quark identification efficiencies

Main uncertainties

- limited statistics of the data set
- size of simulated samples (especially NLO V+jets)
- charm quark identification efficiencies

Relative contributions to the total uncertainty on μ

Uncertainty source	$\Delta \mu / (\Delta \mu)_{tot}$
Statistical	85%
Background normalizations	37%
Experimental	48%
Sizes of the simulated samples	37%
Charm identification efficiencies	23%
Jet energy scale and resolution	15%
Simulation modeling	11%
Luminosity	6%
Lepton identification efficiencies	4%
Theory	22%
Backgrounds	17%
Signal	15%

138 fb⁻ a ∭ B unce H→cē) — S+B

$VZ(Z \rightarrow cc)$ results

\Box The full analysis procedure is validated by measuring the VZ(Z \rightarrow cc) process

- resolved-jet topology:
 - BDT re-trained using $VZ(Z \rightarrow cc)$ as signal
 - fit to the BDT shapes to extract the signal
- merged-jet topology:
 - no change to the analysis procedure
 - fit to the large-R jet mass shapes to extract the signal

$VZ(Z \rightarrow cc)$ results

\Box The full analysis procedure is validated by measuring the VZ(Z \rightarrow cc) process

138 fb⁻¹ (13 TeV) Entries 10⁸ B uncertainty CMS Data VZ(Z→cc) - S+B Preliminary 10^{7} VH(H→cc̄) VH(H→bb) VZ(Z→cc) Z+jets W+jets 10⁶ tī Single Top VV(other) 10⁵ 10⁴ 10³ 10² 10 <u>Data</u> Background 1.5 0.5 -2.5 -0.5 -3 -2 -1.5 -1 0 $\log_{10}(S/B)$

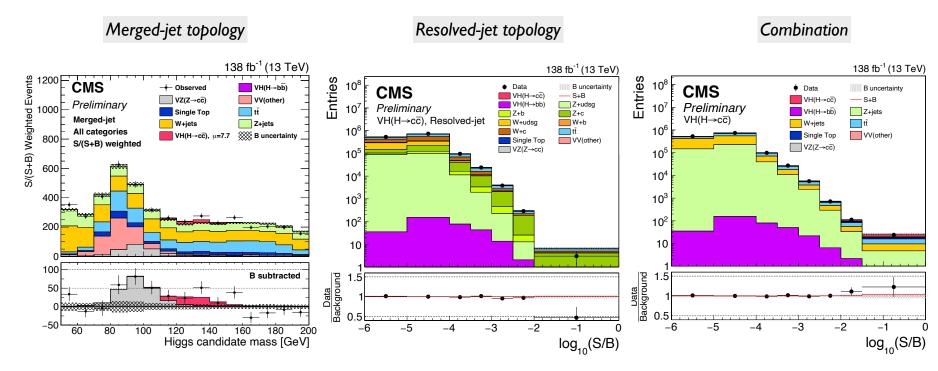
Observed significance for VZ(Z \rightarrow cc): 5.7 σ - expected significance: 5.9 σ

First observation of $Z \rightarrow cc$ at a hadron collider!

$VZ(Z \rightarrow cc)$ results

The full analysis procedure is validated by measuring the $VZ(Z \rightarrow cc)$ process

138 fb⁻¹ (13 TeV) Observed CMS $\pm 1\sigma$ (stat \oplus syst) Preliminary ±1σ (syst) $\pm 2\sigma$ (stat \oplus syst) Combination Resolved-jet Merged-jet 0L 1L 2L 0 0.5 1.5 2.5 -0.5

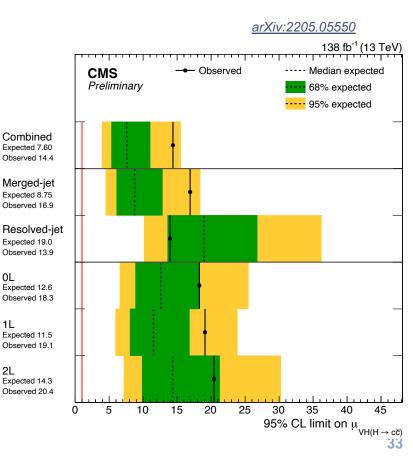

Best-fit signal strength: $\mu_{VZ(Z \rightarrow cc)} = 1.01^{+0.23}_{-0.21}$

- very good agreement with SM expectation
- consistent results between topologies/channels

$VH(H \rightarrow cc)$ results

- - Post-fit distributions in the two topologies and the combination

arXiv:2205.05550


$VH(H \rightarrow cc)$ results

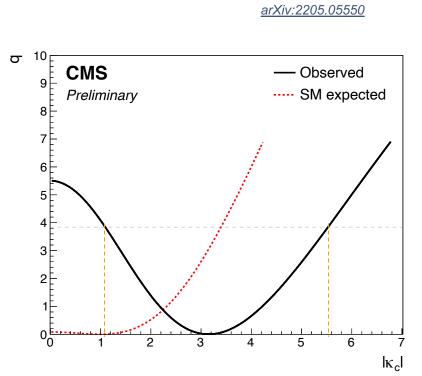
□ Upper limits on the VH(H \rightarrow cc) signal strength at 95% CL:

- [■] $\mu_{VH(H \rightarrow cc)}$ < 14 (7.6) observed (expected)
- substantially stronger than ATLAS full Run 2 result
 - µ_{VH(H→cc)} < 26 (31) obs. (exp.) [arXiv:2201.11428]

Best fit signal strength

- $\mu_{VH(H \rightarrow cc)} = 7.7 + 3.8 3.5$
- consistent with the SM prediction within 2σ

$VH(H \rightarrow cc)$ results


□ Results used to set a constraint on the charm quark Yukawa coupling modifier $\kappa_c = y_c / y_c^{SM}$

 for simplicity, only considering effects on B(H→cc) and fixing all other couplings at SM values:

$$\mu_{\mathrm{VH}(\mathrm{H}\to\mathrm{c}\overline{\mathrm{c}})} = \frac{\kappa_{\mathrm{c}}^{2}}{1 + \mathcal{B}_{\mathrm{SM}}\left(\mathrm{H}\to\mathrm{c}\overline{\mathrm{c}}\right) \times (\kappa_{\mathrm{c}}^{2} - 1)}.$$

\Box The 95% CL interval on κ_c :

- observed: **1.1 < |K**_c**| < 5.5**
- expected: $|\kappa_c| < 3.4$
- most stringent constraint on κ_c to date!
 - comparable to the previous projection for HL-LHC w/ 3000 fb⁻¹: $|\kappa_c| < 3.0$ [ATL-PHYS-PUB-2021-039]

Prospects: HL-LHC

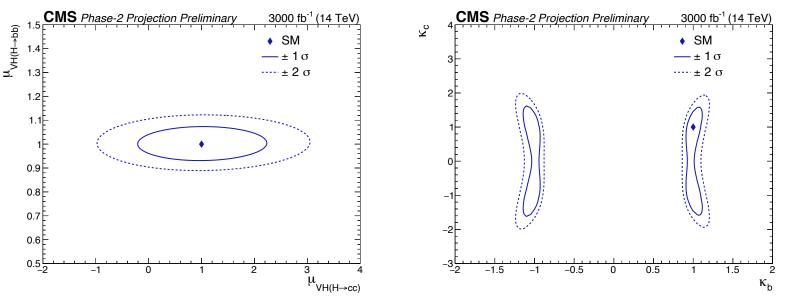
Projection at HL-LHC: Setup

Extrapolation of the merged-jet analysis to HL-LHC with 3000 fb⁻¹ data

□ Modifications to the Run 2 analysis to allow for a simultaneous constraint on $H \rightarrow bb$ and $H \rightarrow cc$

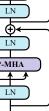
- addition of 3 categories enriched in $H \rightarrow bb$ decays, selected with the ParticleNet bb-tagging discriminant
 - very small (1-2%) overlap of bb and cc categories events assigned to a unique category
- large-R jet p_T threshold lowered from 300 GeV to 200 GeV increasing signal acceptance

Systematic uncertainties adjusted according to the Yellow Report [CERN-2019-007]

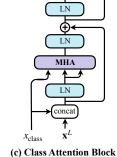

- theoretical uncertainties: reduced by half
- most experimental uncertainties: scaled down with $\sqrt{\mathcal{L}}$
 - bb and cc tagging efficiencies: constrained by $VZ(Z \rightarrow bb)$ and $VZ(Z \rightarrow cc)$ events to ~3% and ~5%
 - misidentification of $H \rightarrow bb$ as $H \rightarrow cc$: a prominent uncertainty on $H \rightarrow cc$ measurement at HL-LHC
 - assumed to be reduced from ~100% (Run 2) to 20% in the projection

Projection at HL-LHC

Simultaneous extraction of the $H \rightarrow bb$ and $H \rightarrow cc$ signal strengths


CMS-PAS-HIG-21-008

- $\mu_{VH(H \rightarrow bb)} = 1.00 \pm 0.03 \text{ (stat.)} \pm 0.04 \text{ (syst.)} = 1.00 \pm 0.05 \text{ (total)}$
- $\mu_{VH(H \rightarrow cc)} = 1.0 \pm 0.6 \text{ (stat.)} \pm 0.5 \text{ (syst.)} = 1.0 \pm 0.8 \text{ (total)}$



Expected sensitivity approaches the SM value for the Higgs-charm coupling.

Prospects: ML for jet tagging

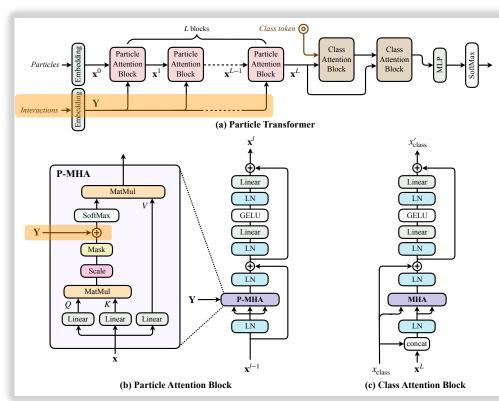
 \mathbf{x}^{l-1}

Interaction features

 $\Delta = \sqrt{(y_a - y_b)^2 + (\phi_a - \phi_b)^2},$

 $z = \min(p_{\mathrm{T},a}, p_{\mathrm{T},b}) / (p_{\mathrm{T},a} + p_{\mathrm{T},b}),$ $m^2 = (E_a + E_b)^2 - \|\mathbf{p}_a + \mathbf{p}_b\|^2,$

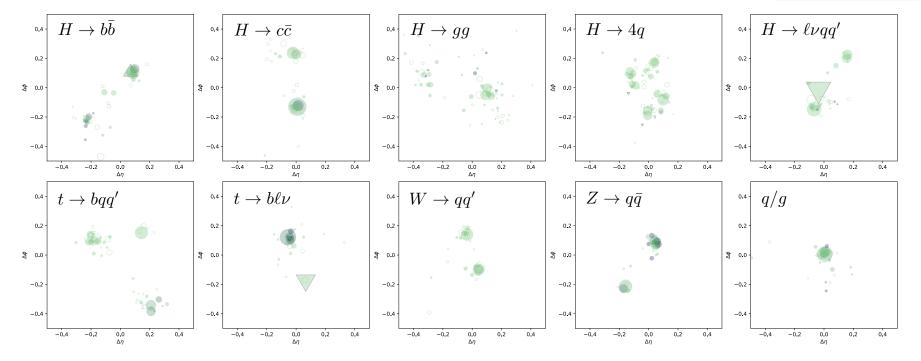
Motivated by LundNet


[F. Dreyer and H. Qu,

[HEP 03 (2021) 052]

 $k_{\mathrm{T}} = \min(p_{\mathrm{T},a}, p_{\mathrm{T},b})\Delta,$

eNet


arT): a new Transformer-based architecture for jet tagging

H. Qu, C. Li, S. Qian, <u>arXiv:2202.03772</u> <u>GitHub</u>

Beyond ParticleNet: JetClass dataset

- □ A new large-scale public jet dataset: 100M jets in 10 classes
 - MadGraph + Pythia (Herwig) + Delphes

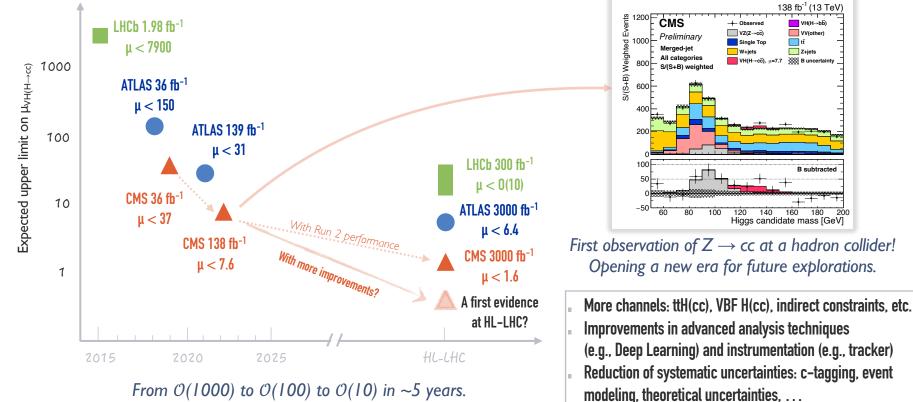
H. Qu, C. Li, S. Qian, <u>arXiv:2202.03772</u> <u>GitHub</u>

Beyond ParticleNet: Particle Transformer

Performance comparison on the JetClass dataset Rej _{50%} = $1/\varepsilon_{bkg}$ @ ε_{sig} = 50%						H. Qu, C. Li, S. Qian, arXiv:2202.03772, GitHub					
	All classes		$H \to b\bar{b} H \to c\bar{c} H$		$H \rightarrow gg$	$H \rightarrow gg H \rightarrow 4q$	$H \to \ell \nu q q'$	$t \rightarrow bqq'$	$t \rightarrow b \ell \nu$	$W \rightarrow qq'$	$Z \to q\bar{q}$
	Accuracy	AUC	$\operatorname{Rej}_{50\%}$	$\operatorname{Rej}_{50\%}$	$\text{Rej}_{50\%}$	Rej _{50%}	Rej _{99%}	$\operatorname{Rej}_{50\%}$	$\text{Rej}_{99.5\%}$	$\text{Rej}_{50\%}$	$\operatorname{Rej}_{50\%}$
PFN	0.772	0.9714	2924	841	75	198	265	797	721	189	159
P-CNN	0.809	0.9789	4890	1276	88	474	947	2907	2304	241	204
ParticleNet	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
ParT (plain)	0.849	0.9859	9569	2911	112	1185	3868	17699	12987	384	311

Fine-tuning result on Top-tagging Benchmark (~2M jets) [SciPost Phys. 7 (2019) 014]

Rej_{30%} AUC Rej_{50%} Accuracy P-CNN 0.930 0.9803 201 ± 4 759 ± 24 PFN 0.9819 247 ± 3 888 ± 17 ParticleNet 0.940 0.9858 1615 ± 93 397 ± 7 0.9807 774.6 JEDI-net (w/ $\sum O$) 0.930 PCT 0.940 0.9855 392 ± 7 1533 ± 101 LGN 0.929 0.964 435 ± 95 rPCN 0.9845 364 ± 9 1642 ± 93 ____ ParT 0.940 0.9858 413 ± 16 1602 ± 81 ParT-f.t. 0.944 0.9877 $\mathbf{691} \pm \mathbf{15}$ $\textbf{2766} \pm \textbf{130}$


Model complexity

	Accuracy	# params	FLOPs
PFN	0.772	86.1 k	4.62 M
P-CNN	0.809	354 k	15.5 M
ParticleNet	0.844	370 k	540 M
ParT	0.861	2.14 M	340 M
ParT (plain)	0.849	2.13 M	260 M

Significant performance improvement. Similar computational cost.

Summary & Outlook

A charming journey

From O(1000) to O(100) to O(10) in ~5 years. A combined effort and creativity from instrumentation, physics objects and analysis techniques!

A charming journey ahead!

Backups

$H \rightarrow cc$ searches at the LHC

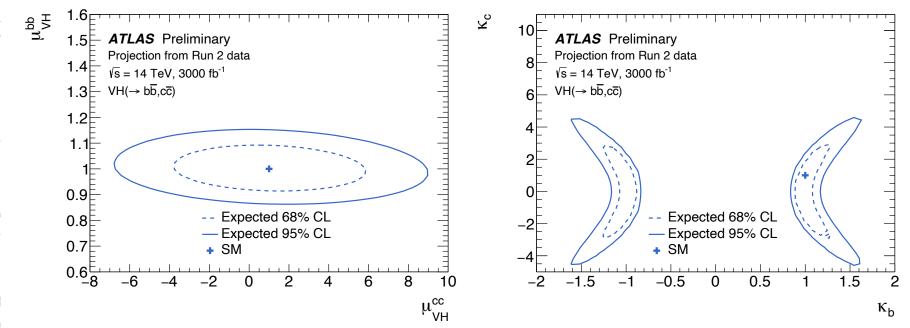
ATLAS:

- Phys. Rev. Lett. 120 (2018) 211802] (36 fb⁻¹)
- [arXiv:2201.11428] (139 fb⁻¹)
- [ATL-PHYS-PUB-2021-039] (HL-LHC projection, 3000 fb⁻¹)

CMS:

- [JHEP 03 (2020) 131] (36 fb⁻¹)
- [CMS-PAS-HIG-21-008] (138 fb⁻¹; HL-LHC projection, 3000 fb⁻¹)

LHCb:


- [LHCb-CONF-2016-006] (1.98 fb⁻¹)
- [LHCb-PUB-2018-009] (HL-LHC projection, 300 fb⁻¹)

Higgs-charm coupling at HL-LHC

□ Expected sensitivity at HL-LHC [CERN-2019-007]

H→cc decay	κ _c < ~1-2
cH production	κ _c < ~2-3
H→J/Ψγ	κ _c < ~80
$p_{T}(H)$ distribution	κ _c < ~10
WH charge assymetry	κ _c < ~4-5

ATLAS HL-LHC projection for $H \rightarrow cc$

Baseline event selections

Merged-jet topology

Variable	0L	1L	2L
p_{T}^ℓ	_	(>25,>30)	>20
Lepton isolation	—	(<0.06,)	(<0.25, —)
$N_{\mathrm{a}\ell}$	=0	=0	—
$M(\ell\ell)$	_	—	75–105
$N_{\mathrm{small}-R}^{\mathrm{aj}}$	<2	<2	<3
$p_{\mathrm{T}}^{\mathrm{miss}}$	>200	>60	—
$p_{\rm T}({ m V})$	>200	>150	>150
$p_{\rm T}({\rm H}_{\rm cand})$	>300	>300	>300
$m\left(\mathrm{H}_{\mathrm{cand}}\right)$	50-200	50-200	50-200
$\Delta \phi(V, H_{cand})$	>2.5	>2.5	>2.5
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{j})$	>0.5	—	—
$\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	_	<1.5	—
Kinematic BDT	>0.55	0.55–0.7, >0.7	>0.55
$c\overline{c}$ discriminant			
High purity	>0.99	>0.99	>0.99
Medium purity	0.96-0.99	0.96-0.99	0.96-0.99
Low purity	0.90-0.96	0.90-0.96	0.90-0.96

Resolved-jet topology

<u> </u>			-	
Variable	0L	1L	$2L \log - p_T(V)$	$2L$ high- $p_T(V)$
$p_{ ext{T}}^\ell$	_	(>25,>30)	>20	>20
Lepton isolation		(<0.06,)	(<0.25,)	(<0.25,)
$N_{a\ell}$	=0	=0	—	—
$M(\ell\ell)$		—	75–105	75-105
$p_{\mathrm{T}}(\mathbf{j}_1)$	>60	>25	>20	>20
$p_{\rm T}(j_2)$	>35	>25	>20	>20
$CvsL(j_1)$	>0.225	>0.225	>0.225	>0.225
$CvsB(j_2)$	> 0.4	> 0.4	> 0.4	> 0.4
$N_{ m small-R}^{ m aj}$	_	<2	—	_
$p_{\mathrm{T}}^{\mathrm{miss}}$	> 170	—	—	—
$p_{\rm T}^{\rm miss}$ significance		>4	—	—
$p_{\mathrm{T}}(\mathrm{V})$	> 170	>100	60-150	>150
$p_{\rm T}({\rm H}_{\rm cand})$	>120	>100	—	—
$m\left(\mathrm{H}_{\mathrm{cand}}\right)$	<250	<250	<250	<250
$\Delta \phi(V, H_{cand})$	>2.0	>2.5	>2.5	>2.5
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{j})$	> 0.5	—	—	—
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	_	<2.0		<u> </u>

Uncertainties

Breakdown of the uncertainties in each topology

Merged-jet topology

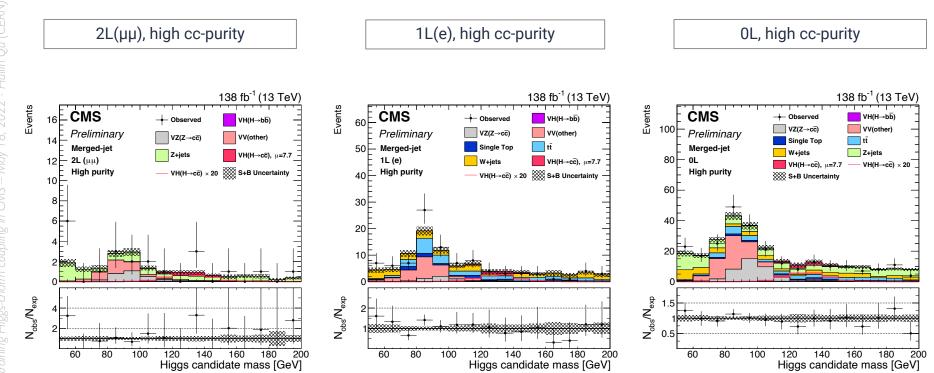
Resolved-jet topology

Table 3: The relative contributions to the	e total uncertainty	on $\mu_{VH(H \rightarrow c\overline{c})}$	in the merged-jet
analysis, with a best fit value $\mu_{VH(H \rightarrow c\overline{c})}$ =	$= 8.7^{+4.6}_{-4.0}$.		

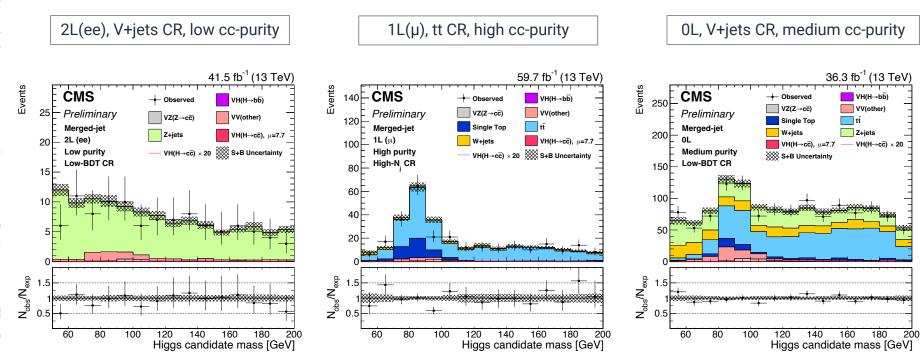
Uncertainty source	$\Delta \mu / (\Delta \mu)_{tot}$
Statistical	88%
Background normalizations	39%
Experimental	40%
Sizes of the simulated samples	24%
Charm identification efficiencies	26%
Jet energy scale and resolution	15%
Simulation modeling	1%
Luminosity	5%
Lepton identification efficiencies	2%
Theory	25%
Backgrounds	21%
Signal	14%

Table 4: The relative contributions to the total uncertainty on $\mu_{VH(H \rightarrow c\overline{c})}$ in the resolved-jet analysis, with a best fit value $\mu_{VH(H \rightarrow c\overline{c})} = -9.5 \pm 9.6$.

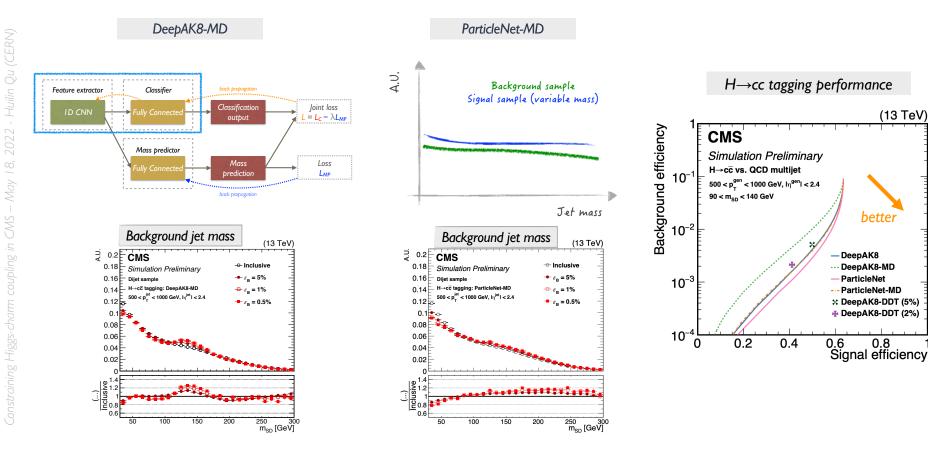
Uncertainty source	$\Delta \mu / (\Delta \mu)_{tot}$
Statistical	66%
Background normalizations	28%
Experimental	72%
Sizes of the simulated samples	59%
Charm identification efficiencies	27%
Jet energy scale and resolution	17%
Simulation modeling	20%
Luminosity	13%
Lepton identification efficiencies	10%
Theory	22%
Backgrounds	21%
Signal	7%


BDT input variables: Merged-jet topology

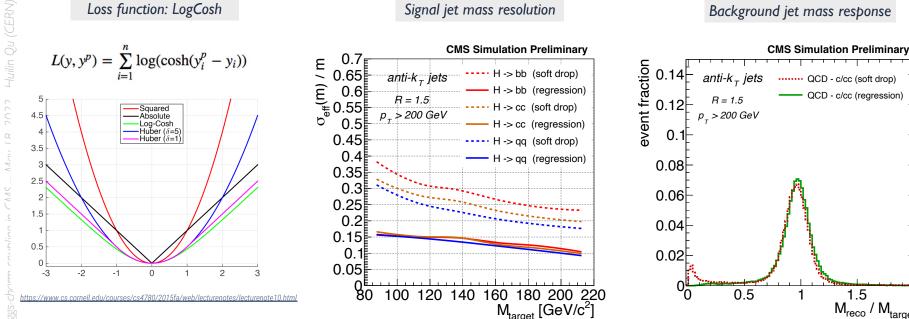
Variable	Description	0-lepton	1-lepton	2-lepton
$p_{\rm T}({\rm V})$	vector boson transverse momentum	\checkmark	\checkmark	\checkmark
$\Delta R(\ell,\ell)$	angular separation between the two leptons	_	_	\checkmark
$p_{\rm T}$ (H _{cand})	H _{cand} transverse momentum	\checkmark	\checkmark	\checkmark
$ \eta(H_{cand}) $	absolute value of the H _{cand} pseudorapidity	\checkmark	_	_
$\Delta \phi(V, H_{cand})$	azimuthal angle between vector boson and H _{cand}	\checkmark	\checkmark	\checkmark
$p_{\mathrm{T}}^{\mathrm{miss}}$	missing transverse momentum	_	\checkmark	_
$\Delta \eta(\mathbf{H}_{cand}, \ell)$	difference in pseudorapidity between H _{cand} and the lepton	_	\checkmark	_
$\Delta \eta(H_{cand})$	difference in pseudorapidity between H _{cand} and vector boson	_	_	\checkmark
$\Delta \eta (H_{cand}, j)$	min. difference in pseudorapidity between H _{cand} and small- <i>R</i> jets	\checkmark	\checkmark	\checkmark
$\Delta \eta(\ell, \mathbf{j})$	min. difference in pseudorapidity between the lepton and small- <i>R</i> jets	_	\checkmark	_
$\Delta \eta(V,j)$	min. difference in pseudorapidity between vector boson and small- <i>R</i> jets	_	_	\checkmark
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{j})$	azimuthal angle between $ec{p}_{ ext{T}}^{ ext{miss}}$ and closest small- <i>R</i> jet	\checkmark	_	_
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	azimuthal angle between \vec{p}_{T}^{miss} and lepton	_	\checkmark	_
m _T	transverse mass of lepton $\vec{p}_{\rm T}$ + $\vec{p}_{\rm T}^{\rm miss}$	_	\checkmark	_
$N^{ m aj}_{ m small-R}$	number of additional small- <i>R</i> jets	\checkmark	\checkmark	\checkmark


BDT input variables: Resolved-jet topology

Variable	Description	0-lepton	1-lepton	2-lepton
$m\left(\mathrm{H}_{\mathrm{cand}}\right)$	H _{cand} mass	\checkmark	~	√
$p_{\rm T}$ (H _{cand})	H _{cand} transverse momentum	—	\checkmark	\checkmark
$p_{\rm T}(V)$	vector boson transverse momentum	—	\checkmark	\checkmark
$m_{\rm T}(V)$	vector boson transverse mass	_	\checkmark	_
p_{T}^{miss}	missing transverse momentum	\checkmark	\checkmark	—
$p_{\rm T}(V)/p_{\rm T}(H_{\rm cand})$	ratio between vector boson and H transverse momenta	\checkmark	\checkmark	\checkmark
CvsL _{max}	CvsL value of the leading CvsL jet	\checkmark	\checkmark	\checkmark
CvsB _{max}	CvsB value of the leading CvsL jet	\checkmark	\checkmark	\checkmark
CvsL _{min}	CvsL value of the subleading CvsL jet	\checkmark	\checkmark	\checkmark
CvsB _{min}	CvsB value of the subleading CvsL jet	\checkmark	\checkmark	\checkmark
p_{Tmax}	$p_{\rm T}$ of the leading <i>CvsL</i> jet	\checkmark	\checkmark	\checkmark
p _{Tmin}	$p_{\rm T}$ of the subleading CvsL jet	\checkmark	\checkmark	\checkmark
$\Delta \phi(V, H_{cand})$	azimuthal angle between vector boson and H	\checkmark	\checkmark	\checkmark
$\Delta R(j_1, j_2)$	ΔR between leading and subleading <i>CvsL</i> jets	_	\checkmark	\checkmark
$\Delta \phi(\mathbf{j}_1, \mathbf{j}_2)$	azimuthal angle between leading and subleading CvsL jets	\checkmark	\checkmark	_
$\Delta \eta(\mathbf{j}_1, \mathbf{j}_2)$	difference in pseudorapidity between leading and subleading CvsL jets	\checkmark	\checkmark	\checkmark
$\Delta \phi(\ell_1, \ell_2)$	azimuthal angle between leading and subleading $p_{\rm T}$ leptons	_	_	\checkmark
$\Delta \eta(\ell_1, \ell_2)$	difference in pseudorapidity between leading and subleading p_{T} leptons	_	_	\checkmark
$\Delta \phi(\ell_1, j_1)$	azimuthal angle between leading $p_{\rm T}$ lepton and leading $CvsL$ jet	_	\checkmark	_
$\Delta \phi(\ell_2, \mathbf{j}_1)$	azimuthal angle between subleading p_{T} lepton and leading $CvsL$ jet	_	_	\checkmark
$\Delta \phi(\ell_2, j_2)$	azimuthal angle between subleading p_{T} lepton and subleading CvsL jet	_	_	\checkmark
$\Delta \phi(\ell_1, p_T^{\text{miss}})$	azimuthal angle between leading $p_{\rm T}$ lepton and missing transverse momentum	_	\checkmark	_
$\Delta \eta(\ell_1, \mathbf{b})$	difference in pseudorapidity between leading $p_{\rm T}$ lepton and b-tagged jet from top quark decay	_	\checkmark	_
$\Delta \phi(\ell_1, \mathbf{b})$	azimuthal angle between leading p_T lepton and b-tagged jet from top quark decay	_	\checkmark	_
$\Delta R(\ell_1, b)$	ΔR between leading $p_{\rm T}$ lepton and b-tagged jet from top quark decay	_	\checkmark	_
CvsLb	CvsL value of the b-tagged jet from top quark decay	_	\checkmark	_
CvsBb	<i>CvsB</i> value of the b-tagged jet from top quark decay	_	\checkmark	_
P(b+bb) _b	DeepJet prob(b+bb) value of the b-tagged jet from top quark decay	_	\checkmark	_
<i>m</i> (t)	Reconstructed top quark mass	_	\checkmark	_
$N_{\text{small-}R}^{\text{aj}}$	Number of small-R additional jets after the FSR subtraction	_	\checkmark	_
$\sigma_{cReg}(j_1)$	leading $p_{\rm T}$ jet resolution from c-jet energy regression	\checkmark	\checkmark	\checkmark
$\sigma_{cReg}(j_2)$	subleading $p_{\rm T}$ jet resolution from c-jet energy regression	\checkmark	\checkmark	~
$\Delta \eta (V, H_{cand}) \ _{kinfit}$	difference in pseudorapidity between vector boson and H _{cand} , after kinematic-fit	_	_	~
$\Delta \phi(V, H_{cand}) \ _{kinfit}$	azimuthal angle between vector boson and H _{cand} , after kinematic-fit	_	_	1
$m(H_{cand}) _{kinfit}$	H _{cand} mass after kinematic-fit	_	_	1
$p_{\rm T}({\rm H}_{\rm cand}) \ _{\rm kinfit}$	H _{cand} transverse momentum after kinematic-fit	_	_	1
$p_{\text{Tmax}} _{\text{kinfit}}$	$p_{\rm T}$ of the leading <i>CvsL</i> jet after kinematic-fit	_	_	1
<i>p</i> Tmin kinfit	$p_{\rm T}$ of the subleading <i>CvsL</i> jet after kinematic-fit	_	_	1
$p_{\rm T}({\rm V})/p_{\rm T}({\rm H}_{\rm cand})\ _{\rm kinf}$		_	_	√
$\sigma(H_{cand}) _{kinfit}$	H_{cand} invariant mass resolution from kinematic fit	_	_	√


Merged-jet topology: signal regions

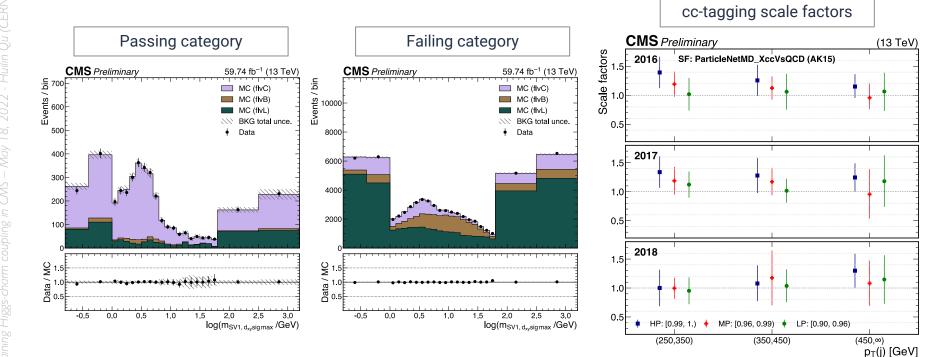
Merged-jet topology: control regions


Comparison of mass decorrelation methods

(13 TeV)

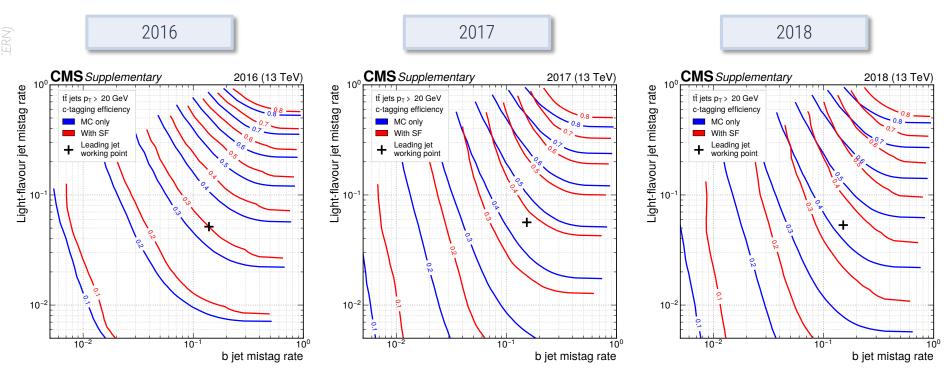
Large-R jet mass regression

55


QCD - c/cc (soft drop)

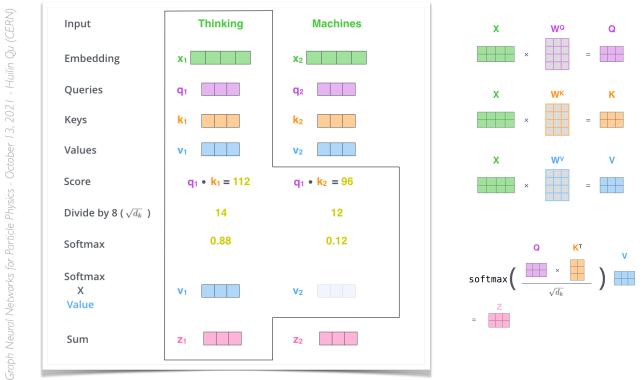
QCD - c/cc (regression)

1.5


M_{reco} / M_{target}

Calibration of the cc-tagger

CMS-DP-2022-005


C-tagger ROC curves

- CMS c-tagging WP: ~40% (c), ~16% (b), ~4% (light)
- ATLAS c-tagging WP [arXiv:2201.11428]: 27% (c), 8% (b), 1.6% (light)

Transformer 101

Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin, arXiv:1706.03762

https://jalammar.github.io/illustrated-transformer/ x