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Introduction

q Discovery of the Higgs boson in 2012: A new chapter of particle physics
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D. Bečirević, N. Košnik and A. Tayduganov 208

The top quark and Higgs boson masses and

the stability of the electroweak vacuum

S. Alekhin, A. Djouadi and S. Moch 214

A further study of µ–τ symmetry breaking at

neutrino telescopes after the Daya Bay and

RENO measurements of θ13

Z.-z. Xing
220

Top decays with flavor changing neutral

Higgs interactions at the LHC

C. Kao, H.-Y. Cheng, W.-S. Hou and J. Sayre 225

(Continued inside)

716
1

P
H

Y
S

IC
S

LE
TTE

R
S

B
Vol. 716/1

(2012 )
1–254

E
L

S
E

V
IE

R

http://www.elsevier.com/locate/physletb

Volume 716, Issue 1, 17 September 2012

ISSN 0370-2693



Co
ns

tra
in

in
g 

H
ig

gs
-c

ha
rm

 c
ou

pl
in

g 
in

 C
M

S 
–

M
ay

 1
8,

 2
02

2 
-H

ui
lin

 Q
u 

(C
ER

N
)

3

Understanding the Higgs boson

q Tremendous progress in our understanding of the Higgs boson in the past ten years

122 123 124 125 126 127 128 129

 CMS
 (8 TeV)-1 (7 TeV) + 19.7 fb-1Run 1: 5.1 fb

 (13 TeV) -12016: 35.9 fb

 (GeV)Hm

γγ→Run 1 H
Total (Stat. Only)

 0.31) GeV± 0.34 ( ±124.70 

 4l→ ZZ→Run 1 H  0.42) GeV± 0.46 ( ±125.59 

Run 1 Combined  0.26) GeV± 0.28 ( ±125.07 

γγ→2016 H  0.18) GeV± 0.26 ( ±125.78 

 4l→ ZZ→2016 H  0.19) GeV± 0.21 ( ±125.26 
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How charming is the Higgs boson?

q Tremendous progress in our understanding of the Higgs boson in the past ten years

122 123 124 125 126 127 128 129

 CMS
 (8 TeV)-1 (7 TeV) + 19.7 fb-1Run 1: 5.1 fb

 (13 TeV) -12016: 35.9 fb

 (GeV)Hm

γγ→Run 1 H
Total (Stat. Only)

 0.31) GeV± 0.34 ( ±124.70 

 4l→ ZZ→Run 1 H  0.42) GeV± 0.46 ( ±125.59 

Run 1 Combined  0.26) GeV± 0.28 ( ±125.07 

γγ→2016 H  0.18) GeV± 0.26 ( ±125.78 

 4l→ ZZ→2016 H  0.19) GeV± 0.21 ( ±125.26 
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)cc→VH(H
µ95% CL upper limit on 
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SM×Obs.=70
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SM×Exp.=79

0L

CMS  (13 TeV)-135.9 fb
)c c→ VH(H→pp

Observed
Median expected
68% expected
95% expected

6

Direct search for H → cc

q Search for H → cc decays: directly sensitive to yc, but very challenging
§ small branching fraction (~3%) vs. large backgrounds (at a hadron collider)

§ charm quark identification is the key

q Exploit associated VH production (V = W, Z)
§ three channels: Z → νν (0L), W → ℓν (1L), Z → ℓℓ (2L) [ℓ = e, μ]

q Main backgrounds
§ V + jets, single and pair production of top quarks, dibosons

§ VH(H → bb): small but largely irreducible

q Baseline event selections
§ (high-pT) vector boson recoiling against a Higgs boson candidate

§ veto events with high jet multiplicity to suppress tt contribution (0L & 1L)

q Previous result (36 fb-1): [JHEP 03 (2020) 131]

q Today: result with the full Run 2 data set (138 fb-1)
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Corresponding ATLAS analysis: arXiv:2201.11428. See also recent LHC seminar by A. Chisholm. 

JHEP 03 (2020) 131

arXiv:2205.05550 (submitted to PRL)

http://dx.doi.org/10.1007/JHEP03(2020)131
https://arxiv.org/abs/2201.11428
https://indico.cern.ch/event/1120561/
http://dx.doi.org/10.1007/JHEP03(2020)131
http://arxiv.org/abs/2205.05550
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Analysis overview

q Two complementary approaches for Higgs boson candidate reconstruction

“Resolved-jet” “Merged-jet”
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Resolved: 2 AK4 jets
Merged: 1 AK8 jet
Merged: 1 AK15 jet

CMS
Preliminary

(13 TeV)

 bb,cc→H 

ΔR(c, c) ~ 2m(H)/pT(H)

q Resolved-jet topology 
§ reconstructs H → cc decay with two small-R jets (R=0.4, “AK4”)
§ probes the bulk (>95%) of the signal phase space

q Merged-jet topology 
§ reconstructs H → cc decay with one large-R jets (R=1.5, “AK15”)
§ small signal acceptance (<5%) but higher purity
§ better exploits the correlation between the two charm quarks



Merged-jet topology

10
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H → cc identification

q Merged-jet topology: Higgs boson candidate reconstructed via a single large-R jet (pT > 300 GeV)

q A major improvement: ParticleNet tagger used to identify H → cc decay

12

CMS-PAS-HIG-21-008 (Run 2 analysis)

ParticleNet [CMS-DP-2020-002]
same spirit as DeepAK8, but 
substantially improved:
graph neural network architecture
novel mass decorrelation technique

JINST 15 (2020) P06005

JHEP 03 (2020) 131

>2x improvement in the final sensitivity

~5x better 
H→bb rejection

~5x better 
V+jet rejection

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-21-008/
https://cds.cern.ch/record/2707946?ln=en
http://dx.doi.org/10.1088/1748-0221/15/06/P06005
http://dx.doi.org/10.1007/JHEP03(2020)131
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ParticleNet architecture

q New jet representation: “particle cloud”
§ treating a jet as an unordered set of particles, distributed in the η — φ space

q ParticleNet [H. Qu and L. Gouskos, Phys.Rev.D 101 (2020) 5, 056019]

§ graph neural network architecture adapted from DGCNN [arXiv:1801.07829]

§ permutation-invariant architecture leads to significant performance improvement

collision event jet reconstruction

proton beams

collision point

outgoing particles

η

ϕ

Δη

Δϕ

jet tagging

H

W

Z

t

?

?

?

?

……

Image from arXiv:2202.03772

Performance on top quark tagging benchmark 
[SciPost Phys. 7, 014 (2019)]

reported in Ref. [52], we did not reimplement it but
just include the results for comparison.

The results are summarized in Table II and also shown in
Fig. 3 in terms of receiver operating characteristic (ROC)
curves. A number of metrics are used to evaluate the
performance, including the accuracy, the area under the
ROC curve (AUC), and the background rejection (1=εb,
i.e., the reciprocal of the background misidentification
rate) at a certain signal efficiency (εs) of 50% or 30%.
The background rejection metric is particularly relevant to
physics analysis at the LHC, as it is directly related to the
expected contribution of background, and is commonly
used to select the best jet tagging algorithm. The
ParticleNet model achieves state-of-the-art performance
on the top tagging benchmark dataset and improves over
previous methods significantly. Its background rejection
power at 30% signal efficiency is roughly 1.8 (2.1) times as

good as PFN (P-CNN) and about 40% better than
ResNeXt-50. Even the ParticleNet-Lite model, with sig-
nificantly reduced complexity, outperforms all the previous
models, achieving about 10% improvement with respect to
ResNeXt-50. The large performance improvement of the
ParticleNet architecture over the PFN architecture is likely
due to a better exploitation of the local neighborhood
information with the EdgeConv operation.

B. Quark-gluon tagging
Another important jet tagging task is quark-gluon tag-

ging, i.e., discriminating jets initiated by quarks and by
gluons. The quark-gluon tagging dataset from Ref. [52] is
used to evaluate the performance of the ParticleNet
architecture on this task. The signal (quark) and back-
ground (gluon) jets are generated with PYTHIA8 using the
Zð→ ννÞ þ ðu; d; sÞ and Zð→ ννÞ þ g processes, respec-
tively. No detector simulation is performed. The final state
non-neutrino particles are clustered into jets using the anti-
kT algorithm [75] with R ¼ 0.4. Only jets with transverse
momentum pT ∈ ½500; 550& and rapidity jyj < 2 are con-
sidered. This dataset consists of 2 million jets in total, half
signal and half background. We follow the recommended
splitting of 1.6 × 106=200; 000=200; 000 for training, val-
idation, and testing in the development of the ParticleNet
model on this dataset.
One important difference of the quark-gluon tagging

dataset is that it includes not only the four momentum but
also the type of each particle (i.e., electron, photon, pion,
etc.). Such particle identification (PID) information can be
quite helpful for jet tagging. Therefore, we include this
information in the ParticleNet model and compare it with
the baseline version using only the kinematic information.
The PID information is included in an experimentally
realistic way by using only five particle types (electron,
muon, charged hadron, neutral hadron, and photon), as well
as the electric charge, as inputs. These six additional
variables, together with the seven kinematic variables,
form the input feature vector of each particle for models
with PID information, as shown in Table I.

FIG. 3. Performance comparison in terms of ROC curves on the
top tagging benchmark dataset.

TABLE II. Performance comparison on the top tagging benchmark dataset. The ParticleNet, ParticleNet-Lite,
P-CNN, and ResNeXt-50 models are trained on the top tagging dataset starting from randomly initialized weights.
For each model, the training is repeated for nine times using different randomly initialized weights. The table shows
the result from the median-accuracy training, and the standard deviation of the nine trainings is quoted as the
uncertainty to assess the stability to random weight initialization. Uncertainty on the accuracy and AUC are
negligible and therefore omitted. The performance of PFN on this dataset is reported in Ref. [52], and the
uncertainty corresponds to the spread in ten trainings.

Accuracy AUC 1=εb at εs ¼ 50% 1=εb at εs ¼ 30%

ResNeXt-50 0.936 0.9837 302' 5 1147' 58
P-CNN 0.930 0.9803 201' 4 759' 24
PFN ( ( ( 0.9819 247' 3 888' 17
ParticleNet-Lite 0.937 0.9844 325' 5 1262' 49
ParticleNet 0.940 0.9858 397' 7 1615' 93

HUILIN QU and LOUKAS GOUSKOS PHYS. REV. D 101, 056019 (2020)

056019-6

reported in Ref. [52], we did not reimplement it but
just include the results for comparison.

The results are summarized in Table II and also shown in
Fig. 3 in terms of receiver operating characteristic (ROC)
curves. A number of metrics are used to evaluate the
performance, including the accuracy, the area under the
ROC curve (AUC), and the background rejection (1=εb,
i.e., the reciprocal of the background misidentification
rate) at a certain signal efficiency (εs) of 50% or 30%.
The background rejection metric is particularly relevant to
physics analysis at the LHC, as it is directly related to the
expected contribution of background, and is commonly
used to select the best jet tagging algorithm. The
ParticleNet model achieves state-of-the-art performance
on the top tagging benchmark dataset and improves over
previous methods significantly. Its background rejection
power at 30% signal efficiency is roughly 1.8 (2.1) times as

good as PFN (P-CNN) and about 40% better than
ResNeXt-50. Even the ParticleNet-Lite model, with sig-
nificantly reduced complexity, outperforms all the previous
models, achieving about 10% improvement with respect to
ResNeXt-50. The large performance improvement of the
ParticleNet architecture over the PFN architecture is likely
due to a better exploitation of the local neighborhood
information with the EdgeConv operation.

B. Quark-gluon tagging
Another important jet tagging task is quark-gluon tag-

ging, i.e., discriminating jets initiated by quarks and by
gluons. The quark-gluon tagging dataset from Ref. [52] is
used to evaluate the performance of the ParticleNet
architecture on this task. The signal (quark) and back-
ground (gluon) jets are generated with PYTHIA8 using the
Zð→ ννÞ þ ðu; d; sÞ and Zð→ ννÞ þ g processes, respec-
tively. No detector simulation is performed. The final state
non-neutrino particles are clustered into jets using the anti-
kT algorithm [75] with R ¼ 0.4. Only jets with transverse
momentum pT ∈ ½500; 550& and rapidity jyj < 2 are con-
sidered. This dataset consists of 2 million jets in total, half
signal and half background. We follow the recommended
splitting of 1.6 × 106=200; 000=200; 000 for training, val-
idation, and testing in the development of the ParticleNet
model on this dataset.
One important difference of the quark-gluon tagging

dataset is that it includes not only the four momentum but
also the type of each particle (i.e., electron, photon, pion,
etc.). Such particle identification (PID) information can be
quite helpful for jet tagging. Therefore, we include this
information in the ParticleNet model and compare it with
the baseline version using only the kinematic information.
The PID information is included in an experimentally
realistic way by using only five particle types (electron,
muon, charged hadron, neutral hadron, and photon), as well
as the electric charge, as inputs. These six additional
variables, together with the seven kinematic variables,
form the input feature vector of each particle for models
with PID information, as shown in Table I.

FIG. 3. Performance comparison in terms of ROC curves on the
top tagging benchmark dataset.

TABLE II. Performance comparison on the top tagging benchmark dataset. The ParticleNet, ParticleNet-Lite,
P-CNN, and ResNeXt-50 models are trained on the top tagging dataset starting from randomly initialized weights.
For each model, the training is repeated for nine times using different randomly initialized weights. The table shows
the result from the median-accuracy training, and the standard deviation of the nine trainings is quoted as the
uncertainty to assess the stability to random weight initialization. Uncertainty on the accuracy and AUC are
negligible and therefore omitted. The performance of PFN on this dataset is reported in Ref. [52], and the
uncertainty corresponds to the spread in ten trainings.

Accuracy AUC 1=εb at εs ¼ 50% 1=εb at εs ¼ 30%

ResNeXt-50 0.936 0.9837 302' 5 1147' 58
P-CNN 0.930 0.9803 201' 4 759' 24
PFN ( ( ( 0.9819 247' 3 888' 17
ParticleNet-Lite 0.937 0.9844 325' 5 1262' 49
ParticleNet 0.940 0.9858 397' 7 1615' 93
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https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/2202.03772
https://doi.org/10.21468/SciPostPhys.7.1.014


Co
ns

tra
in

in
g 

H
ig

gs
-c

ha
rm

 c
ou

pl
in

g 
in

 C
M

S 
–

M
ay

 1
8,

 2
02

2 
-H

ui
lin

 Q
u 

(C
ER

N
)

Mass decorrelation

q “Mass sculpting”: background jet mass shape 
becomes similar to signal after tagger selection

q New approach to prevent mass sculpting
§ using a special signal sample for training

§ hadronic decays of a spin-0 particle X

§ X → bb, X → cc, X → qq

§ not a fixed mass, but a flat mass spectrum

§ m(X) ∈ [15, 250] GeV

§ allows to easily reweight both signal and background 
to a ~flat 2D distribution in (pT, mass) for the training

q Signal and background have the same (~flat) 
mass spectrum, thus no sculpting will develop in 
the training

Background sample
Signal sample (fixed mass)

Jet mass

A
.U

.

Background jet mass

Plain training: 
no mass decorrelation

Background jet mass

Mass-decorrelated 
training

14

CMS-DP-2020-002

Background sample
Signal sample (variable mass)

Jet mass
A

.U
.

https://cds.cern.ch/record/2707946?ln=en
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Mass decorrelation (II)

q “Mass sculpting”: background jet mass shape 
becomes similar to signal after tagger selection

q New approach to prevent mass sculpting
§ using a special signal sample for training

§ hadronic decays of a spin-0 particle X

§ X → bb, X → cc, X → qq

§ not a fixed mass, but a flat mass spectrum

§ m(X) ∈ [15, 250] GeV

§ allows to easily reweight both signal and background 
to a ~flat 2D distribution in (pT, mass) for the training

q Performance loss due to mass decorrelation 
greatly reduced compared to the previous approach 
(DeepAK8-MD, based on “adversarial training”)

15

CMS-DP-2020-002

better

H→cc tagging performance

https://cds.cern.ch/record/2707946?ln=en
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Calibration of the cc-tagger

q Need to measure ParticleNet cc-tagging efficiency in data
§ no pure sample of H → cc jets (or even Z → cc) in data

§ using g → cc in QCD multi-jet events as a proxy

q Difficulty: select a phase-space in g → cc that resembles H → cc
§ solution: a dedicated BDT developed to distinguish hard 2-prong splittings

(i.e., high quark contribution to the jet momentum) from soft cc radiations 
(i.e., high gluon contribution to the jet momentum)

§ also allows to adjust the similarity between proxy and signal jets

§ by varying the sfBDT cut — treated as a systematic uncertainty

q Perform a fit to the secondary vertex mass shapes in the “passing” 
and “failing” regions simultaneously to extract the scale factors

§ three templates: cc (+ single c), bb (+ single b), light flavor jets

q Derived cc-tagging scale factors typically 0.9—1.3
§ corresponding uncertainties are 20—30%

CMS-DP-2022-005

https://cds.cern.ch/record/2805611
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Large-R jet mass regression

Jet mass response: 
H→cc jets Regressed mass vs cc-tagger WP

~50% better 
resolution

Minimal mass sculpting on 
background QCD jets

q Jet mass: one of the most powerful observable to distinguish signal and backgrounds

q New ParticleNet-based regression algorithm to improve the large-R jet mass reconstruction
§ training setup similar to the ParticleNet tagger; the regression target:

§ signal (X → bb/cc/qq): generated particle mass of X [flat spectrum in 15 – 250 GeV]

§ background (QCD) jets: soft drop mass of the particle-level jet

20 – 25% improvement 
in the final sensitivity

CMS DP-2021/017

https://cds.cern.ch/record/2777006/
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Analysis strategy

q Factorized approach for analysis design
§ event-level kinematic BDT developed in each channel to better suppress main backgrounds (V+jets, tt)

§ using only event kinematics, no intrinsic properties (e.g., mass/flavor) of the large-R jet

§ ParticleNet cc-tagger then used to define 3 cc-flavor enriched regions and reject light/bb-flavor jets

§ finally: fit to the ParticleNet-regressed large-R jet mass shape for signal extraction

q Kinematic BDT, ParticleNet cc-tagger and regressed jet mass largely independent of each other
§ allowing for a simple and robust strategy for background estimation and signal extraction
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Background estimation

q Normalizations of main backgrounds estimated via dedicated data control regions (CRs)
§ V+jets CR: use the low kinematic BDT region

§ tt CR (0L & 1L): invert the cut on the number of additional small-R jets (i.e., Naj ≥ 2)

§ free-floating parameters scale the normalizations in CRs and signal regions (SRs) simultaneously

q CRs designed to have similar jet flavor composition as the SR
§ flavor-independent kinematic BDT + same cc-tagging requirement in CRs as in SR

§ allows to correct cc-tagging efficiency for backgrounds directly from data

§ cc-tagging SFs only needed for the signal VH(H → cc) process (and VZ(Z → cc))

§ conservative uncertainty (2x/0.5x) for the misidentification of H(Z) → bb as H(Z) → cc

q Minor backgrounds (single top, dibosons, VH(H → bb)) estimated from simulation
§ dibosons: applying differential NNLO QCD + NLO EW corrections as a function of pT(V) [JHEP 2002 (2020) 087]

kinBDT

cc
 ta

gg
er

SR
V+jets

CR

Na(jets)

tt
CR (*)

(*) Not used in 2L channel

https://link.springer.com/article/10.1007/JHEP02(2020)087
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Charm quark identification

q Resolved-jet topology: Higgs boson candidate reconstructed with two small-R jets

q Charm quark jet identification: DeepJet algorithm
§ ~2x (~40%) improvement in light (b) jet rejection at 40% c jet efficiency compared to DeepCSV
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Charm tagging calibration

q Novel calibration method to correct the entire distributions of the c-tagging discriminants
§ per-jet SFs derived as a function of (CvsL, CvsB | truth flavor)

q SFs derived with an iterative approach using three samples
§ Z(ℓℓ) + jets (light jet enriched);  W + c (c-jet enriched);  tt (b-jet enriched)
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Charm jet energy regression

q Dedicated jet energy regression algorithm developed to improve the c-jet energy scale and resolution
§ based on the b jet energy regression [Comput.Softw.Big Sci. 4 (2020) 10] used in several CMS H→bb analyses

§ re-trained for c jets instead of b jets

§ c jets collected from W→cx decay in tt MC events

§ provides simultaneous estimation of the c jet energy and its resolution

§ both used as inputs to the signal extraction BDT
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http://dx.doi.org/10.1007/s41781-020-00041-z
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Higgs boson candidate reconstruction

q Higgs boson candidate reconstructed using the 
two small-R jets with highest CvsL scores

q To improve the Higgs candidate mass resolution:
§ recovery of final state radiations (FSR)

§ additional jets within ΔR < 0.8 from either of the two 
selected jets are included in the calculation of the Higgs 
candidate’s 4-momentum

§ improves the Higgs mass resolution by a few percent

§ new DNN-based c-jet energy regression

§ ~20% improvement in Higgs candidate mass resolution

§ improved kinematic fit in the 2L channel

§ better reconstruction of the Higgs candidate’s 4-
momentum using constraints from the Z → ℓℓ system

§ up to 30% improvement in Higgs candidate mass 
resolution
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Signal extraction strategy

q Event-level BDT trained in each channel to maximize the signal vs background separation
§ inputs: event kinematics, Higgs candidate properties, c-tagging discriminants

§ + kinematic fit variables in 2L

q Background estimation
§ dedicated CRs to constrain the normalizations of main backgrounds (V + jets, tt)

§ V + jets split based on flavor: V + b, V + c, V + udsg

q Simultaneous fit of SRs (BDT shapes) and CRs (c-tagging discriminants) for signal extraction
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Combination of the two topologies

q The two topologies are made orthogonal via the presence of large-R jet with pT > 300 GeV
§ pT threshold chosen to maximize expected sensitivity

“Resolved-jet” “Merged-jet”
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Uncertainties

q Systematic uncertainties correlated between topologies, except:
§ background normalizations for V+jets and tt

§ charm quark identification efficiencies

q Main uncertainties
§ limited statistics of the data set

§ size of simulated samples (especially NLO V+jets)

§ charm quark identification efficiencies

5

Table 1: The relative contributions to the total uncertainty on the signal strength modifier µ for
the VH(H ! cc) process.

Uncertainty source Dµ/ (Dµ)tot
Statistical 85%

Background normalizations 37%
Experimental 48%

Sizes of the simulated samples 37%
Charm identification efficiencies 23%
Jet energy scale and resolution 15%
Simulation modeling 11%
Luminosity 6%
Lepton identification efficiencies 4%

Theory 22%

Backgrounds 17%
Signal 15%
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Figure 2: Distribution of events as a function of S/B in the VZ(Z ! cc) (left) and VH(H ! cc)
(right) searches, where S and B are the postfit signal and background yields, respectively, in
each bin of the fitted m (Hcand) or BDT discriminant distributions. The bottom panel shows
the ratio of data to the total background, with the uncertainty in background indicated by gray
hatching. The red line represents background plus SM signal divided by background.

expectation. Figure 2 (left) shows the distribution of events in all channels, sorted into bins168

of similar signal-to-background ratios. The observed data shows a visible excess over the ex-169

pected non-VZ(Z ! cc) backgrounds. The significance of the excess is computed using the170

asymptotic distribution of a test statistic based on the profile likelihood ratio [90, 91]. The ob-171

served (expected) significance is 4.4 (4.7) standard deviations for the merged-jet analysis, 3.1172

(3.3) standard deviations for the resolved-jet analysis, and 5.7 (5.9) standard deviations for their173

combination. This is the first observation of Z ! cc at a hadron collider.174

Figure 2 (right) compares the observed data to the SM prediction in the search of VH(H ! cc),175

where the best fit µ is µVH(H!cc ) = 7.7+3.8
�3.5. The fitted m (Hcand) distribution in the merged-jet176

topology is displayed in Fig. 3. No significant excess over the background-only hypothesis is177

observed. An upper limit on µVH(H!cc ) is extracted via the asymptotic CLs method [90–93].178

The observed (expected) 95% CL upper limit on µVH(H!cc ) is 14 (7.6+3.4
�2.3), which is equivalent to179

Relative contributions to the total uncertainty on μ
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VZ(Z → cc) results

q The full analysis procedure is validated by measuring the VZ(Z → cc) process
§ resolved-jet topology: 

§ BDT re-trained using VZ(Z → cc) as signal

§ fit to the BDT shapes to extract the signal

§ merged-jet topology: 

§ no change to the analysis procedure

§ fit to the large-R jet mass shapes to extract the signal
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VZ(Z → cc) results

q The full analysis procedure is validated by measuring the VZ(Z → cc) process
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Observed significance for VZ(Z → cc): 5.7σ

- expected significance: 5.9σ

First observation of Z→cc at a hadron collider!

arXiv:2205.05550

http://arxiv.org/abs/2205.05550
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VZ(Z → cc) results

q The full analysis procedure is validated by measuring the VZ(Z → cc) process

Best-fit signal strength:   μVZ(Z → cc) = 1.01"0.21
#0.23

- very good agreement with SM expectation

- consistent results between topologies/channels
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arXiv:2205.05550

http://arxiv.org/abs/2205.05550
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VH(H → cc) results

q Post-fit distributions in the two topologies and the combination
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VH(H → cc) results
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Observed         Median expected
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CMS
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 (13 TeV)-1138 fb
q Upper limits on the VH(H → cc) signal strength 
at 95% CL:

§ μVH(H → cc) < 14 (7.6) observed (expected)

§ substantially stronger than ATLAS full Run 2 result

§ μVH(H → cc) < 26 (31) obs. (exp.) [arXiv:2201.11428]

q Best fit signal strength

§ μVH(H → cc) = 7.7 "3.5
#3.8

§ consistent with the SM prediction within 2σ

arXiv:2205.05550

https://arxiv.org/abs/2201.11428
http://arxiv.org/abs/2205.05550


Co
ns

tra
in

in
g 

H
ig

gs
-c

ha
rm

 c
ou

pl
in

g 
in

 C
M

S 
–

M
ay

 1
8,

 2
02

2 
-H

ui
lin

 Q
u 

(C
ER

N
)

34

VH(H → cc) results

q Results used to set a constraint on the charm 
quark Yukawa coupling modifier κc = yc / yc

SM

§ for simplicity, only considering effects on B(H→cc) 
and fixing all other couplings at SM values:

q The 95% CL interval on κc:

§ observed: 1.1 < |κc| < 5.5

§ expected: |κc| < 3.4

§ most stringent constraint on κc to date!

§ comparable to the previous projection for HL-LHC w/ 
3000 fb-1: |κc| < 3.0 [ATL-PHYS-PUB-2021-039]
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significance of 4.4 (4.7) standard deviations for the merged-jet topology analysis, 3.1 (3.3) stan-200

dard deviations for the resolved-jet topology analysis, and 5.7 (5.9) standard deviations for201

their combination, leading to the first observation of Z ! cc at hadron colliders.202
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Figure 2: Combined H boson candidate mass distributions in all channels of the merged-jet
(left) and resolved-jet (right) topologies. The fitted mass distribution in each signal region is
weighted by S/(S + B), where S and B are the VH(H ! cc) signal yield and the sum of all
background yields considering their fitted normalization, respectively. The lower panel shows
the data (points) and the fitted VH(H ! cc) (red) and VZ(Z ! cc) background (grey) distri-
butions after subtracting all other background processes. The error bar for each bin represents
the pre-subtraction 1s statistical uncertainty on the data, while the gray hatching indicates the
1s total uncertainty on the signal and all background components.

Figure 2 shows the comparison between the observed data and the SM prediction in the merged-203

jet and resolved-jet topologies separately. The best fit µ of the VH(H ! cc) process is deter-204

mined as µVH(H!cc ) = 7.7+3.8
�3.5. An upper limit (UL) on µVH(H!cc ) is extracted based on a mod-205

ified frequentist approach using the CLs criterion [93, 94] under the asymptotic approximation206

for the test statistic [91, 92]. The observed (expected) 95% CL UL on µVH(H!cc ) is 14 (7.6+3.4
�2.3),207

which is equivalent to an observed (expected) UL on s (VH)B (H ! cc) of 0.94 (0.50+0.22
�0.15) pb208

at 95% CL. The 95% CL UL on µVH(H!cc ) in each individual channel is summarized in Figure209

3.210

The result is interpreted in the k-framework [57, 95] by reparameterizing µVH(H!cc ) in terms
of the Higgs-charm Yukawa coupling modifier kc in the likelihood, assuming only the H boson
decay widths are altered:

µVH(H!cc ) =
k2

c

1 + BSM (H ! cc)⇥ (k2
c � 1)

. (1)

The measured 95% CL interval is 1.0 < |kc | < 5.6, while the expected 95% CL UL is |kc | < 3.4.211

In summary, we presented the search by the CMS Collaboration for the standard model (SM)212

Higgs boson H decaying to a pair of charm quarks, produced in association with a vector boson213

V. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV collected214

with the CMS detector during the LHC Run 2 operation and correspond to an integrated lu-215

minosity of 138 fb�1. Novel jet reconstruction and identification tools and analysis techniques216

arXiv:2205.05550

http://arxiv.org/abs/2205.05550
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Projection at HL-LHC: Setup

q Extrapolation of the merged-jet analysis to HL-LHC with 3000 fb-1 data

q Modifications to the Run 2 analysis to allow for a simultaneous constraint on H → bb and H → cc
§ addition of 3 categories enriched in H → bb decays, selected with the ParticleNet bb-tagging discriminant

§ very small (1-2%) overlap of bb and cc categories – events assigned to a unique category

§ large-R jet pT threshold lowered from 300 GeV to 200 GeV – increasing signal acceptance

q Systematic uncertainties adjusted according to the Yellow Report [CERN-2019-007]

§ theoretical uncertainties: reduced by half

§ most experimental uncertainties: scaled down with ℒ

§ bb and cc tagging efficiencies: constrained by VZ(Z → bb) and VZ(Z → cc) events to ~3% and ~5%

§ misidentification of H → bb as H → cc: a prominent uncertainty on H → cc measurement at HL-LHC

§ assumed to be reduced from ~100% (Run 2) to 20% in the projection

https://cds.cern.ch/record/2703572
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Projection at HL-LHC

q Simultaneous extraction of the H → bb and H → cc signal strengths
§ μVH(H → bb) = 1.00 ± 0.03 (stat.) ± 0.04 (syst.) = 1.00 ± 0.05 (total)

§ μVH(H → cc) = 1.0 ± 0.6 (stat.) ± 0.5 (syst.) = 1.0 ± 0.8 (total)
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Expected sensitivity approaches the SM value for the Higgs-charm coupling.
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https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-21-008/
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Beyond ParticleNet

q Particle Transformer (ParT): a new Transformer-based architecture for jet tagging
§ Transformer + interaction

Particle Transformer for Jet Tagging
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix Y is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same Y is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-
teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging

task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The
second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an

Interaction features

Motivated by LundNet
[F. Dreyer and H. Qu, 
JHEP 03 (2021) 052]

H. Qu, C. Li, S. Qian, 
arXiv:2202.03772

GitHub
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https://doi.org/10.1007/JHEP03(2021)052
https://arxiv.org/abs/2202.03772
https://github.com/jet-universe/particle_transformer
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Beyond ParticleNet: JetClass dataset

H ! 4qH ! bb̄ H ! cc̄ H ! gg H ! `⌫qq
0

q/gt ! b`⌫t ! bqq0 W ! qq0 Z ! qq̄

40

q A new large-scale public jet dataset: 100M jets in 10 classes
§ MadGraph + Pythia (Herwig) + Delphes

H. Qu, C. Li, S. Qian, 
arXiv:2202.03772

GitHub

https://arxiv.org/abs/2202.03772
https://github.com/jet-universe/particle_transformer
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Beyond ParticleNet: Particle Transformer
Particle Transformer for Jet Tagging

Table 1. Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (Sirunyan et al.,
2020b) and the state-of-the-art ParticleNet (Qu & Gouskos, 2020). For all the metrics, a higher value indicates better performance. The
ParT architecture using plain MHAs instead of P-MHAs, labelled as ParT (plain), is also shown for comparison.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311

The large improvement of ParT is likely to lead to a sig-
nificant jump in the discovery potential for related physics
searches at the LHC.

Another observation is that there is a large variation in tag-
ging performance between signals of different types. The
best separation against the background q/g jets is achieved
for t ! b`⌫ and H ! `⌫qq0 signals – with the powerful
ParT model, these two can be selected almost perfectly, i.e.,
at an efficiency of more than 99% with nearly no contami-
nation from background jets. This opens up new territory
for jet tagging at the LHC, as these types of jets have not
been exploited for tagging so far.

Ablation study. To quantify the effectiveness of the P-
MHA introduced in ParT, we carried out an ablation study
by replacing the P-MHA with a standard MHA, the result-
ing architecture is then a plain Transformer and therefore
denoted as ParT (plain). We train ParT (plain) with the same
procedure as the full ParT and the performance is shown in
Table 1. An accuracy drops of 1.2% is observed compared
to the full ParT, and the background rejection is reduced
by 20–30% for most signals. Note that, replacing P-MHA
with plain MHA implies that the particle interaction input is
discarded completely, but this does not imply a reduction of
information content, as the interaction features defined in
Equation (3) are derived purely from the energy-momentum
4-vectors, which are already used as particle features via
the 7 kinematic variables presented in Table 5. Therefore,
the improvement of ParT over a plain Transformer indeed
arise from an efficient exploitation of the particle kinematic
information using the P-MHA.

Model complexity. Table 2 compares the model complexity
of ParT with the baselines. While the number of trainable
parameters is increased by more than 5⇥ compared to Par-
ticleNet, the number of floating point operations (FLOPs)
is actually 40% lower. We also observe that the FLOPs
of ParT are 30% higher than ParT (plain), which mostly
comes from the encoding of the pairwise features, because
the computational cost there scales quadratically with the
number of particles in a jet.

Table 2. Number of trainable parameters and FLOPs.

Accuracy # params FLOPs

PFN 0.772 86.1 k 4.62 M
P-CNN 0.809 354 k 15.5 M
ParticleNet 0.844 370 k 540 M
ParT 0.861 2.14 M 340 M

ParT (plain) 0.849 2.13 M 260 M

5.2. Fine-Tuning for Other Datasets

Top quark tagging dataset. The top quark tagging bench-
mark (Butter et al., 2019) provides a dataset of 2 M
(1.2/0.4/0.4 M for train/validation/test) jets in two classes,
t ! bqq0 (signal) and q/g (background). Only kinematic
features, i.e., the energy-momentum 4-vectors, are provided.
Therefore, we pre-train a ParT model on the JETCLASS
dataset also using only the kinematic features, and then fine-
tune it on the top quark tagging dataset. The particle input
features are the 7 kinematic features listed in Table 5, the
same as used by ParticleNet. The JETCLASS pre-training
follows the same setup as described in Section 5.1. For the
fine-tuning, we replace the last MLP with a new randomly-
initialized MLP with 2 output nodes, and then fine-tune all
the weights on the top tagging dataset for 20 epochs. A
smaller LR of 0.0001 is used for the pre-trained weights,
while a larger LR of 0.005 is used to update the randomly-
initialized weights of the MLP. The LR remains constant
across the full training, with a weight decay of 0.01. We run
a total of 9 experiments, starting from the same pre-trained
model but different random initializations of the replaced
MLP, and report the performance of the model with median
accuracy and the spread, following the procedure used by
ParticleNet. For comparison, we also trained ParT from
scratch on this dataset for 20 epochs, using a start LR of
0.001, a schedule that decays the LR to 1% in the last 30%
of the epochs, and a weight decay of 0.01. Both results are
presented in Table 3. The pre-trained ParT achieves a sig-
nificant improvement over the existing baselines, increasing
Rej30% by 70% compared to the previous state-of-the-art,
ParticleNet. On the other hand, the ParT model trained from
scratch only reaches similar performance as ParticleNet.

Particle Transformer for Jet Tagging

Table 1. Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (Sirunyan et al.,
2020b) and the state-of-the-art ParticleNet (Qu & Gouskos, 2020). For all the metrics, a higher value indicates better performance. The
ParT architecture using plain MHAs instead of P-MHAs, labelled as ParT (plain), is also shown for comparison.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311

The large improvement of ParT is likely to lead to a sig-
nificant jump in the discovery potential for related physics
searches at the LHC.

Another observation is that there is a large variation in tag-
ging performance between signals of different types. The
best separation against the background q/g jets is achieved
for t ! b`⌫ and H ! `⌫qq0 signals – with the powerful
ParT model, these two can be selected almost perfectly, i.e.,
at an efficiency of more than 99% with nearly no contami-
nation from background jets. This opens up new territory
for jet tagging at the LHC, as these types of jets have not
been exploited for tagging so far.

Ablation study. To quantify the effectiveness of the P-
MHA introduced in ParT, we carried out an ablation study
by replacing the P-MHA with a standard MHA, the result-
ing architecture is then a plain Transformer and therefore
denoted as ParT (plain). We train ParT (plain) with the same
procedure as the full ParT and the performance is shown in
Table 1. An accuracy drops of 1.2% is observed compared
to the full ParT, and the background rejection is reduced
by 20–30% for most signals. Note that, replacing P-MHA
with plain MHA implies that the particle interaction input is
discarded completely, but this does not imply a reduction of
information content, as the interaction features defined in
Equation (3) are derived purely from the energy-momentum
4-vectors, which are already used as particle features via
the 7 kinematic variables presented in Table 5. Therefore,
the improvement of ParT over a plain Transformer indeed
arise from an efficient exploitation of the particle kinematic
information using the P-MHA.

Model complexity. Table 2 compares the model complexity
of ParT with the baselines. While the number of trainable
parameters is increased by more than 5⇥ compared to Par-
ticleNet, the number of floating point operations (FLOPs)
is actually 40% lower. We also observe that the FLOPs
of ParT are 30% higher than ParT (plain), which mostly
comes from the encoding of the pairwise features, because
the computational cost there scales quadratically with the
number of particles in a jet.

Table 2. Number of trainable parameters and FLOPs.

Accuracy # params FLOPs

PFN 0.772 86.1 k 4.62 M
P-CNN 0.809 354 k 15.5 M
ParticleNet 0.844 370 k 540 M
ParT 0.861 2.14 M 340 M

ParT (plain) 0.849 2.13 M 260 M

5.2. Fine-Tuning for Other Datasets

Top quark tagging dataset. The top quark tagging bench-
mark (Butter et al., 2019) provides a dataset of 2 M
(1.2/0.4/0.4 M for train/validation/test) jets in two classes,
t ! bqq0 (signal) and q/g (background). Only kinematic
features, i.e., the energy-momentum 4-vectors, are provided.
Therefore, we pre-train a ParT model on the JETCLASS
dataset also using only the kinematic features, and then fine-
tune it on the top quark tagging dataset. The particle input
features are the 7 kinematic features listed in Table 5, the
same as used by ParticleNet. The JETCLASS pre-training
follows the same setup as described in Section 5.1. For the
fine-tuning, we replace the last MLP with a new randomly-
initialized MLP with 2 output nodes, and then fine-tune all
the weights on the top tagging dataset for 20 epochs. A
smaller LR of 0.0001 is used for the pre-trained weights,
while a larger LR of 0.005 is used to update the randomly-
initialized weights of the MLP. The LR remains constant
across the full training, with a weight decay of 0.01. We run
a total of 9 experiments, starting from the same pre-trained
model but different random initializations of the replaced
MLP, and report the performance of the model with median
accuracy and the spread, following the procedure used by
ParticleNet. For comparison, we also trained ParT from
scratch on this dataset for 20 epochs, using a start LR of
0.001, a schedule that decays the LR to 1% in the last 30%
of the epochs, and a weight decay of 0.01. Both results are
presented in Table 3. The pre-trained ParT achieves a sig-
nificant improvement over the existing baselines, increasing
Rej30% by 70% compared to the previous state-of-the-art,
ParticleNet. On the other hand, the ParT model trained from
scratch only reaches similar performance as ParticleNet.

Significant performance improvement. 
Similar computational cost.

Performance comparison on the JetClass dataset

Model complexity

Particle Transformer for Jet Tagging

Table 3. Comparison between ParT and existing models on the top
quark tagging dataset. ParT-f.t. denotes the model pre-trained on
JETCLASS and fine-tuned on this dataset. ParT refers to the model
trained from scratch on this dataset. Results for other models are
quoted from their published results: P-CNN and ParticleNet (Qu &
Gouskos, 2020), PFN (Komiske et al., 2019b), JEDI-net (Moreno
et al., 2020), PCT (Mikuni & Canelli, 2021), LGN (Bogatskiy
et al., 2020), and rPCN (Shimmin, 2021).

Accuracy AUC Rej50% Rej30%
P-CNN 0.930 0.9803 201 ± 4 759 ± 24
PFN — 0.9819 247 ± 3 888 ± 17
ParticleNet 0.940 0.9858 397 ± 7 1615 ± 93
JEDI-net (w/

P
O) 0.930 0.9807 — 774.6

PCT 0.940 0.9855 392 ± 7 1533 ± 101
LGN 0.929 0.964 — 435 ± 95
rPCN — 0.9845 364 ± 9 1642 ± 93
ParT 0.940 0.9858 413 ± 16 1602 ± 81
ParT-f.t. 0.944 0.9877 691 ± 15 2766 ± 130

This highlights the benefits of a large dataset for jet tagging.

Quark-gluon tagging dataset. We also benchmark ParT
on the quark-gluon tagging dataset (Komiske et al., 2019a)
proposed in Komiske et al. (2019b), the target of which
is to separate jets initiated by quarks (signal) from those
by gluons (background). This dataset also consists of 2 M
jets, with a recommended train/validation/test splitting of
1.6/0.2/0.2 M. It provides not only the kinematic features,
but also particle identification information. We consider two
scenarios in the usage of the particle identification informa-
tion. In the “exp” scenario, we restrict the information to
only 5 classes and do not attempt to separate electrically
charged (and neural) hadrons of different types, which is the
procedure adopted by ParticleNet, and also prescribed by
the JETCLASS dataset. In the “full” scenario, we consider
all particle types and further distinguish electrically charged
(and neural) hadrons into more types. We perform the pre-
training on JETCLASS using only the kinematic and particle
identification inputs, the follows the first scenario as that
is the prescribed one for JETCLASS. For the fine-tuning,
we then carry out experiments under both scenarios. The
pre-training and fine-tuning setup is the same as in the top
quark tagging benchmark, and the fine-tuning also lasts for
20 epochs. Results are summarized in Table 4. The pre-
trained ParT achieves the best performance and improves
existing baselines by a large margin in both scenarios.

6. Discussion and Conclusion
Large-scale datasets have always been a catalyst for new
breakthroughs in deep learning. In this work, we present
JETCLASS, a new large-scale open dataset to advance deep
learning research in particle physics. The dataset consists
of 100 M simulated jets, about two orders of magnitude
larger than existing public jet datasets, and covers a broad

Table 4. Comparison between ParT and existing models on the
quark-gluon tagging dataset. ParT-f.t. denotes the model pre-
trained on JETCLASS and fine-tuned on this dataset. ParT refers to
the model trained from scratch on this dataset. Results for other
models are quoted from their published results: P-CNN and Parti-
cleNet (Qu & Gouskos, 2020), PFN (Komiske et al., 2019b), ABC-
Net (Mikuni & Canelli, 2020), PCT (Mikuni & Canelli, 2021), and
rPCN (Shimmin, 2021). The subscript “exp” and “full” distinguish
models using partial or full particle identification information.

Accuracy AUC Rej50% Rej30%
P-CNNexp 0.827 0.9002 34.7 91.0
PFNexp — 0.9005 34.7 ± 0.4 —
ParticleNetexp 0.840 0.9116 39.8 ± 0.2 98.6 ± 1.3
rPCNexp — 0.9081 38.6 ± 0.5 —
ParTexp 0.840 0.9121 41.3 ± 0.3 101.2 ± 1.1
ParT-f.t.exp 0.843 0.9151 42.4 ± 0.2 107.9 ± 0.5

PFNfull — 0.9052 37.4 ± 0.7 —
ABCNetfull 0.840 0.9126 42.6 ± 0.4 118.4 ± 1.5
PCTfull 0.841 0.9140 43.2 ± 0.7 118.0 ± 2.2
ParTfull 0.849 0.9203 47.9 ± 0.5 129.5 ± 0.9
ParT-f.t.full 0.852 0.9230 50.6 ± 0.2 138.7 ± 1.3

spectrum of 10 classes of jets in total, including several
novel types that have not been studied with deep learning
so far. While we focus on investigating a classification
task, i.e., jet tagging, with this dataset, we highlight that
this dataset can serve as the basis for many important deep
learning researches in particle physics, e.g., unsupervised or
self-supervised training techniques for particle physics (e.g.,
Dillon et al. (2021)), generative models for high-fidelity fast
simulation of particle collisions (e.g., Kansal et al. (2021a)),
regression models to predict jet energy and momentum with
higher precision (e.g., Sirunyan et al. (2020a)), and more.
We invite the community to explore and experiment with
this dataset and extend the boundary of deep learning and
particle physics even further.

With this large dataset, we introduce Particle Transformer
(ParT), a new architecture that substantially improves jet
tagging performance over previous state-of-the-art. We pro-
pose it as a new jet tagging baseline for future research
to improve upon. The effectiveness of ParT arises mainly
from the augmented self-attention, in which we incorpo-
rate physics-inspired pairwise interactions together with the
machine-learned dot-product attention. This approach is
likely to be effective for other tasks on similar datasets, such
as point clouds or many-body systems, especially when
prior knowledge is available to describe the interaction or
the geometry. On the other hand, one limitation of using the
full pairwise interaction matrix is the increase in computa-
tional time and memory consumption. Novel approaches for
particle (point) embeddings and self-attentions that alleviate
the computational cost could be an interesting direction for
future research.

Fine-tuning result on Top-tagging Benchmark (~2M jets) [SciPost Phys. 7 (2019) 014]

H. Qu, C. Li, S. Qian, 
arXiv:2202.03772, GitHubRej50% = 1/εbkg @ εsig = 50%

https://doi.org/10.21468/SciPostPhys.7.1.014
https://arxiv.org/abs/2202.03772
https://github.com/jet-universe/particle_transformer
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A charming journey

More channels: ttH(cc), VBF H(cc), indirect constraints, etc.
Improvements in advanced analysis techniques 
(e.g., Deep Learning) and instrumentation (e.g., tracker)
Reduction of systematic uncertainties: c-tagging, event 
modeling, theoretical uncertainties, …

First observation of Z→ cc at a hadron collider!
Opening a new era for future explorations.

A charming journey ahead!

From 𝒪(1000) to 𝒪(100) to 𝒪(10) in ~5 years.
A combined effort and creativity from instrumentation, 

physics objects and analysis techniques!
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μ < 6.4
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μ < 1.6

20202015 2025 HL-LHC

A first evidence
at HL-LHC?

With Run 2 performance
With more improvements?

LHCb 1.98 fb-1

μ < 7900

LHCb 300 fb-1

μ < O(10)
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H → cc searches at the LHC

q ATLAS:
§ [Phys. Rev. Lett. 120 (2018) 211802] (36 fb-1)

§ [arXiv:2201.11428] (139 fb-1)

§ [ATL-PHYS-PUB-2021-039] (HL-LHC projection, 3000 fb-1)

q CMS:
§ [JHEP 03 (2020) 131] (36 fb-1)

§ [CMS-PAS-HIG-21-008] (138 fb-1; HL-LHC projection, 3000 fb-1)

q LHCb:
§ [LHCb-CONF-2016-006] (1.98 fb-1)

§ [LHCb-PUB-2018-009] (HL-LHC projection, 300 fb-1)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.211802
http://arxiv.org/abs/arXiv:2201.11428
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-039/
http://dx.doi.org/10.1007/JHEP03(2020)131
https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-21-008/
https://cds.cern.ch/record/2209531/
https://cds.cern.ch/record/2320509


Co
ns

tra
in

in
g 

H
ig

gs
-c

ha
rm

 c
ou

pl
in

g 
in

 C
M

S 
–

M
ay

 1
8,

 2
02

2 
-H

ui
lin

 Q
u 

(C
ER

N
)

46

Higgs-charm coupling at HL-LHC

q Expected sensitivity at HL-LHC [CERN-2019-007]

H→cc decay |κc| < ~1-2

cH production |κc| < ~2-3

H→J/Ψγ |κc| < ~80

pT(H) distribution |κc| < ~10

WH charge assymetry |κc| < ~4-5



Co
ns

tra
in

in
g 

H
ig

gs
-c

ha
rm

 c
ou

pl
in

g 
in

 C
M

S 
–

M
ay

 1
8,

 2
02

2 
-H

ui
lin

 Q
u 

(C
ER

N
)

47

ATLAS HL-LHC projection for H → cc
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Baseline event selections

Resolved-jet topologyMerged-jet topology

33

2 Additional tables

Table 1: Event selection criteria for the signal region in the merged-jet analysis. Entries marked
with “—” indicate that the variable is not used in the given channel. The values listed for
kinematic variables are in units of GeV, and for angles in units of radians. Where selection
differs between lepton flavors, the selection is listed as (muon, electron).

Variable 0L 1L 2L
p`T — (>25,>30) >20
Lepton isolation — (<0.06, —) (<0.25, —)
Na` =0 =0 —
M(``) — — 75–105
Naj

small-R <2 <2 <3
pmiss

T >200 >60 —
pT(V) >200 >150 >150
pT(Hcand) >300 >300 >300
m (Hcand) 50–200 50–200 50–200
Df(V, Hcand) >2.5 >2.5 >2.5
Df(~pmiss

T , j) >0.5 — —
Df(~pmiss

T , `) — <1.5 —
Kinematic BDT >0.55 0.55–0.7, >0.7 >0.55
cc discriminant

High purity >0.99 >0.99 >0.99
Medium purity 0.96–0.99 0.96–0.99 0.96–0.99
Low purity 0.90–0.96 0.90–0.96 0.90–0.96

34

Table 2: Event selection criteria for the signal region in the resolved-jet analysis. Entries marked
with “—” indicate that the variable is not used in the given channel. The values listed for
kinematic variables are in units of GeV, and for angles in units of radians. Where selection
differs between lepton flavors, the selection is listed as (muon, electron).

Variable 0L 1L 2L low-pT(V) 2L high-pT(V)

p`T — (>25,>30) >20 >20
Lepton isolation — (<0.06, —) (<0.25, —) (<0.25, —)

Na` =0 =0 — —
M(``) — — 75–105 75–105
pT(j1) >60 >25 >20 >20
pT(j2) >35 >25 >20 >20

CvsL(j1) >0.225 >0.225 >0.225 >0.225
CvsB(j2) >0.4 >0.4 >0.4 >0.4
Naj

small-R — <2 — —
pmiss

T > 170 — — —
pmiss

T significance — >4 — —
pT(V) >170 >100 60–150 >150

pT(Hcand) >120 >100 — —
m (Hcand) <250 <250 <250 <250

Df(V, Hcand) >2.0 >2.5 >2.5 >2.5
Df(~pmiss

T , j) >0.5 — — —
Df(~pmiss

T , `) — <2.0 — —

Table 3: The relative contributions to the total uncertainty on µVH(H!cc ) in the merged-jet
analysis, with a best fit value µVH(H!cc ) = 8.7+4.6

�4.0.
Uncertainty source Dµ/ (Dµ)tot

Statistical 88%

Background normalizations 39%
Experimental 40%

Sizes of the simulated samples 24%
Charm identification efficiencies 26%
Jet energy scale and resolution 15%
Simulation modeling 1%
Luminosity 5%
Lepton identification efficiencies 2%

Theory 25%

Backgrounds 21%
Signal 14%
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Uncertainties

q Breakdown of the uncertainties in each topology

Resolved-jet topologyMerged-jet topology

34

Table 2: Event selection criteria for the signal region in the resolved-jet analysis. Entries marked
with “—” indicate that the variable is not used in the given channel. The values listed for
kinematic variables are in units of GeV, and for angles in units of radians. Where selection
differs between lepton flavors, the selection is listed as (muon, electron).

Variable 0L 1L 2L low-pT(V) 2L high-pT(V)

p`T — (>25,>30) >20 >20
Lepton isolation — (<0.06, —) (<0.25, —) (<0.25, —)

Na` =0 =0 — —
M(``) — — 75–105 75–105
pT(j1) >60 >25 >20 >20
pT(j2) >35 >25 >20 >20

CvsL(j1) >0.225 >0.225 >0.225 >0.225
CvsB(j2) >0.4 >0.4 >0.4 >0.4
Naj

small-R — <2 — —
pmiss

T > 170 — — —
pmiss

T significance — >4 — —
pT(V) >170 >100 60–150 >150

pT(Hcand) >120 >100 — —
m (Hcand) <250 <250 <250 <250

Df(V, Hcand) >2.0 >2.5 >2.5 >2.5
Df(~pmiss

T , j) >0.5 — — —
Df(~pmiss

T , `) — <2.0 — —

Table 3: The relative contributions to the total uncertainty on µVH(H!cc ) in the merged-jet
analysis, with a best fit value µVH(H!cc ) = 8.7+4.6

�4.0.
Uncertainty source Dµ/ (Dµ)tot

Statistical 88%

Background normalizations 39%
Experimental 40%

Sizes of the simulated samples 24%
Charm identification efficiencies 26%
Jet energy scale and resolution 15%
Simulation modeling 1%
Luminosity 5%
Lepton identification efficiencies 2%

Theory 25%

Backgrounds 21%
Signal 14%

35

Table 4: The relative contributions to the total uncertainty on µVH(H!cc ) in the resolved-jet
analysis, with a best fit value µVH(H!cc ) = �9.5 ± 9.6.

Uncertainty source Dµ/ (Dµ)tot

Statistical 66%

Background normalizations 28%
Experimental 72%

Sizes of the simulated samples 59%
Charm identification efficiencies 27%
Jet energy scale and resolution 17%
Simulation modeling 20%
Luminosity 13%
Lepton identification efficiencies 10%

Theory 22%

Backgrounds 21%
Signal 7%
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BDT input variables: Merged-jet topology

34

Table 2: Event selection criteria for the signal region in the resolved-jet analysis. Entries marked
with “—” indicate that the variable is not used in the given channel. The values listed for
kinematic variables are in units of GeV, and for angles in units of radians. Where selection
differs between lepton flavors, the selection is listed as (muon, electron).

Variable 0L 1L 2L low-pT(V) 2L high-pT(V)

p`T — (>25,>30) >20 >20
Lepton isolation — (<0.06, —) (<0.25, —) (<0.25, —)

Na` =0 =0 — —
M(``) — — 75–105 75–105
pT(j1) >60 >25 >20 >20
pT(j2) >35 >25 >20 >20

CvsL(j1) >0.225 >0.225 >0.225 >0.225
CvsB(j2) >0.4 >0.4 >0.4 >0.4
Naj

small-R — <2 — —
pmiss

T > 170 — — —
pmiss

T significance — >4 — —
pT(V) >170 >100 60–150 >150

pT(Hcand) >120 >100 — —
m (Hcand) <250 <250 <250 <250

Df(V, Hcand) >2.0 >2.5 >2.5 >2.5
Df(~pmiss

T , j) >0.5 — — —
Df(~pmiss

T , `) — <2.0 — —

Table 3: Variables used in the kinematic BDT training for each channel of the merged-jet anal-
ysis.

Variable Description 0-lepton 1-lepton 2-lepton
pT(V) vector boson transverse momentum X X X
DR(`, `) angular separation between the two leptons — — X
pT (Hcand) Hcand transverse momentum X X X
|h(Hcand)| absolute value of the Hcand pseudorapidity X — —
Df(V, Hcand) azimuthal angle between vector boson and Hcand X X X
pmiss

T missing transverse momentum — X —
Dh(Hcand, `) difference in pseudorapidity between Hcand and the lepton — X —
Dh(Hcand, ) difference in pseudorapidity between Hcand and vector boson — — X
Dh(Hcand, j) min. difference in pseudorapidity between Hcand and small-R jets X X X
Dh(`, j) min. difference in pseudorapidity between the lepton and small-R jets — X —
Dh(V, j) min. difference in pseudorapidity between vector boson and small-R jets — — X
Df(~pmiss

T , j) azimuthal angle between ~pmiss
T and closest small-R jet X — —

Df(~pmiss
T , `) azimuthal angle between ~pmiss

T and lepton — X —
mT transverse mass of lepton ~pT + ~pmiss

T — X —
Naj

small-R number of additional small-R jets X X X
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BDT input variables: Resolved-jet topology

35

Table 4: Variables employed in the training of the BDT used for each channel of the resolved-jet
analysis.

Variable Description 0-lepton 1-lepton 2-lepton
m (Hcand) Hcand mass X X X
pT (Hcand) Hcand transverse momentum — X X
pT(V) vector boson transverse momentum — X X
mT(V) vector boson transverse mass — X —
pmiss

T missing transverse momentum X X —
pT(V)/pT(Hcand) ratio between vector boson and H transverse momenta X X X
CvsLmax CvsL value of the leading CvsL jet X X X
CvsBmax CvsB value of the leading CvsL jet X X X
CvsLmin CvsL value of the subleading CvsL jet X X X
CvsBmin CvsB value of the subleading CvsL jet X X X
pTmax pT of the leading CvsL jet X X X
pTmin pT of the subleading CvsL jet X X X
Df(V, Hcand) azimuthal angle between vector boson and H X X X
DR(j1, j2) DR between leading and subleading CvsL jets — X X
Df(j1, j2) azimuthal angle between leading and subleading CvsL jets X X —
Dh(j1, j2) difference in pseudorapidity between leading and subleading CvsL jets X X X
Df(`1, `2) azimuthal angle between leading and subleading pT leptons — — X
Dh(`1, `2) difference in pseudorapidity between leading and subleading pT leptons — — X
Df(`1, j1) azimuthal angle between leading pT lepton and leading CvsL jet — X —
Df(`2, j1) azimuthal angle between subleading pT lepton and leading CvsL jet — — X
Df(`2, j2) azimuthal angle between subleading pT lepton and subleading CvsL jet — — X
Df(`1, pmiss

T ) azimuthal angle between leading pT lepton and missing transverse momentum — X —
Dh(`1, b) difference in pseudorapidity between leading pT lepton and b-tagged jet from top quark decay — X —
Df(`1, b) azimuthal angle between leading pT lepton and b-tagged jet from top quark decay — X —
DR(`1, b) DR between leading pT lepton and b-tagged jet from top quark decay — X —
CvsLb CvsL value of the b-tagged jet from top quark decay — X —
CvsBb CvsB value of the b-tagged jet from top quark decay — X —
P(b+bb)b DeepJet prob(b+bb) value of the b-tagged jet from top quark decay — X —
m(t) Reconstructed top quark mass — X —
Naj

small-R Number of small-R additional jets after the FSR subtraction — X —
scReg(j1) leading pT jet resolution from c-jet energy regression X X X
scReg(j2) subleading pT jet resolution from c-jet energy regression X X X
Dh(V, Hcand)kkinfit difference in pseudorapidity between vector boson and Hcand, after kinematic-fit — — X
Df(V, Hcand)kkinfit azimuthal angle between vector boson and Hcand, after kinematic-fit — — X
m(Hcand)kkinfit Hcand mass after kinematic-fit — — X
pT(Hcand)kkinfit Hcand transverse momentum after kinematic-fit — — X
pTmaxkkinfit pT of the leading CvsL jet after kinematic-fit — — X
pTminkkinfit pT of the subleading CvsL jet after kinematic-fit — — X
pT(V)/pT(Hcand)kkinfit ratio between vector boson and Hcand transverse momenta after kinematic-fit — — X
s(Hcand)kkinfit Hcand invariant mass resolution from kinematic fit — — X
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Merged-jet topology: signal regions

2L(μμ), high cc-purity 1L(e), high cc-purity 0L, high cc-purity
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Merged-jet topology: control regions
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Comparison of mass decorrelation methods
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Large-R jet mass regression

https://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote10.html 80 100 120 140 160 180 200 220
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Calibration of the cc-tagger
CMS-DP-2022-005

Passing category Failing category

cc-tagging scale factors

https://cds.cern.ch/record/2805611
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C-tagger ROC curves
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2016 20182017

§ CMS c-tagging WP: ~40% (c), ~16% (b), ~4% (light)

§ ATLAS c-tagging WP [arXiv:2201.11428]: 27% (c), 8% (b), 1.6% (light)

https://arxiv.org/abs/2201.11428
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EXAMPLE: TRANSFORMER

 X

Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin, arXiv:1706.03762

https://jalammar.github.io/illustrated-transformer/


