

DarkQuest-**Probing Dark Sector with a Proton Fixed-Target Experiment at Fermilab**

SYSU-PKU Particle Physics Forum

冯永彬 (Fermilab)

May 25th, 2022

Collider vs Fixed-target Experiments

• Higher energy

• Higher intensity

DarkQuest -Probing Dark Sector with a Proton Fixed-Target Experiment at Fermilab

- Dark Sector:
 - What? Why? How?
- DarkQuest:
 - Proton fixed-target experiment based on SpinQuest
 - How to use DarkQuest to probe dark sectors:
 - Spectrometer upgrades
 - Simulation studies on calorimeter, tracking, triggering, ParticleID
 - Acceptance & Sensitivity

Outline

- Dark Sector: What? Why? How?
- DarkQuest:
 - Proton fixed-target experiment based on SpinQuest
 - How to use DarkQuest to probe dark sectors:
 - Spectrometer upgrades

 - Acceptance & Sensitivity

Simulation studies on calorimeter, tracking, triggering, ParticleID

Dark Matter

• From experimental observations we know dark matter exist, and they participate in gravitational interactions. Where are they?

Dark Matter Mass Scale

Dark Matter Mass Scale

Thermal Dark Matter

matter:

TeV scale

- Popular candidates: Weakly Interacting Massive Particles (WIMP)
- Typically have masses around GeV to TeV ("WIMP miracle")

• Indirect detection:

• typically in the sky: DAMPE, AMS, FermiLAT

• Indirect detection:

• typically in the sky: DAMPE, AMS, FermiLAT

• Collider searches

• e.g., look for mono-Jet/ photon/lepton etc

- Sensitivity is close to the neutrino boundaries
- but no discovery yet.

Light Dark Matter

• What next?

Light Dark Matter

Light Dark Matter

Dark (Hidden) Sector

- Dark Sectors can connect to SM sectors via some new couplings.
- E/p/m, displaced lepton/hadrons, etc

Can probe the dark sector by looking at the dark mediators and their decay products: missing

How to Probe Dark Sector

 m_{χ}

Dark Mediator Mass

 $2m_{\chi}$

How to Probe Dark Sector

How to Probe Dark Sector

Probe Dark Sector with Accelerators

neutrino beam

• Beam from accelerator: electron/muon/proton/

Probe Dark Sector with Accelerators

 Look for final states with bumps/ displaced signals/missing E/p/m
ATLAS/CMS/LHCb, Belle, BES?

Probe Dark Sector with Accelerators

 Look for final states with bumps/ displaced signals/missing E/p/m ATLAS/CMS/LHCb, Belle, BES?

- Analyze the dark mediator decay products: bumps/displaced signals/missing E/p/m
 - NA64 @ CERN, LDMX @ SLAC, DarkQuest @ Fermilab
 - Usually low background, better sensitivity at low mass region

Example: Dark Photon Production with Proton fixed-target

Meson decays to A'

Example: Dark Photon Production with Proton fixed-target

Larger production rates with proton beams compared with electron beams

Typical Collider searches

Rare prompt

Rare prompt

Short Summary

- Thermal dark matter is a "natural" dark matter candidate
- MeV-GeV scale light dark matter and dark sectors are promising and mostly unconstrained yet
- Fixed-target experiments provide an unique and very sensitive way to probe this light dark matter and dark sector region

Dark Sector:
What? Why? How?

- DarkQuest:
 - Proton fixed-target experiment based on SpinQuest
 - How to use DarkQuest to probe dark sectors:
 - Spectrometer upgrades
 - Simulation studies on calorimeter, tracking, triggering, ParticleID
 - Acceptance & Sensitivity

DarkQuest

- DarkQuest: a proposed proton fixed-target
 experiment at Fermilab
- upgraded from the existing SpinQuest experiment

120GeV Proton Beam

Fermilab Accelerator Complex

- I20 GeV high-intensity proton beam from the Fermilab Accelerator Complex
 - * Expect 10^{18} Protons on target (POT) in a 2year parasitic run
 - * 10^{20} POT for longer term runs

120GeV Proton Beam

Fermilab Accelerator Complex

• LHC I3TeV run: ~150 fb^{-1} of data, inelastic scattering $\sigma \sim 80$ mb. This brings to about 10^{16} "protons on target"

- I20 GeV high-intensity proton beam from the Fermilab Accelerator Complex
 - * Expect 10^{18} Protons on target (POT) in a 2year parasitic run
 - * 10^{20} POT for longer term runs

SpinQuest Spectrometer

SpinQuest Spectrometer

- SpinQuest spectrometer:
 - FMag: beam dump and absorber;
 - Hollow KMag + 4 stations of drift chambers: tracking
 - Scintillator hodoscopes: triggering
 - Muon station: tagging muons
- Measuring the Drell-Yan process for studying the Transverse Momentum Dependent PDFs (TMDs) inside the proton

- DarkQuest spectrometer:
 - Probing dark sector by looking at displaced signals
- Upgrades on SpinQuest:

- DarkQuest spectrometer:
 - Probing dark sector by looking at displaced signals
- Upgrades on SpinQuest:
 - Additional tracking layers from HyperCP experiment

- DarkQuest spectrometer:
 - Probing dark sector by looking at displaced signals
- Upgrades on SpinQuest:
 - Additional tracking layers from HyperCP experiment
 - Hodoscopes to trigger on displaced signals

- DarkQuest spectrometer:
 - Probing dark sector by looking at displaced signals
- Upgrades on SpinQuest:
 - Additional tracking layers from HyperCP experiment
 - Hodoscopes to trigger on displaced signals
 - EMCal from PHENIX experiment: to trigger and reco electrons and photons, leading to more sensitivity to lower masses

Why DarkQuest

 $m_{A'}$ [GeV]

- Large dark sector production cross section with I20GeV high-intensity proton beam
- Compact geometry and relatively short displacement baseline (5m) to cover unique and broad phase spaces
- Most of the experimental components already exist, very low cost: ~IM

Broad Sensitivity Coverage

 10^{-6}

10⁻²

Fermionic iDM, $m_{A'}=3m_1$, $\Delta=0.1$, $\alpha_D=0.1$ 2- and 3-body decays, $m_{\pi}/f_{\pi} = 3$ 10- 10^{-2} 10^{-2} 10^{-3} 10^{-4} $m_V | m_\pi = 1.8$ 10^{-3} ϵ $m_V/m_\pi = 1.6$. ϵ 10^{-5} 10^{-4} DarkQuest (20) JarkQuest (2026- 10^{-6} 10^{-5}

- Broad coverage to different theory models,
 - Different portals: scalar, vector, neutrino, axion-like, etc, by probing lepton/hadrons
 - Arxiv.1804.00661, Arxiv.2008.08108, Arxiv.1801.05805

List of Studies

- Detector: EMCal integration into the spectrometer
- Geant-based Simulations:
 - EMCal simulations
 - Triggering
 - Tracking & vertexing
 - ParticleID: tracking + calorimeter information
- Acceptances & Sensitivity

Detector Upgrade Studies

- EMCal: $PbWO_4$ + iron sampling calorimeter from PHENIX experiment
- EMCal integration into the spectrometer:
 - Developments of the readout and trigger system ongoing
 - Currently in possession of a few cells to explore SiPM readouts

z[m]

Ongoing Studies: EMCal Simulations

- EMCal: ~5cm per cell (2-3 Molière radius of $PbWO_4$): most energy deposit in one central cell
- Nice separation between two electron showers
- Agreement of the resolutions between the simulation (red) and the previous test beam results

- Exploring newly installed hodoscopes to trigger on displaced: No bending in y direction: straight line matching \therefore Large improvements: O(1%) -> O(10-80%)
- Include EMCal information in the trigger system to trigger on Electron/Photons

Tracking and Vertexing

• Less affected by the multiple scatterings in FMag. Better resolutions compared with prompt signals:

- Less affected by the multi scatterings in FMag. Better resolutions compared with prompt signals:
 - 75% track reconstruction efficiency for high momentum particles;
 - 5% mass resolution,
 - 5-10 cm Z resolution for dark photons decaying after FMag

Tracking and Vertexing

Particle Identification

 Working on Particle ID based on the combination of tracking and EMCal information

Signal Acceptance

- Dark photon signal acceptance as a function of coupling and masses
 - Only includes the muon channel; working on understanding the electron channel
- Simulation and study of the hadron and muon backgrounds ongoing. Finalizing soon.

Collaboration

• A strong team assembled of both experimentalists and theorists:

Collaboration

A strong team assembled of both experimentalists and theorists:

One Snowmass paper: https://arxiv.org/pdf/ 2203.08322.pdf

DarkQuest: A dark sector upgrade to SpinQuest at the 120 GeV Fermilab Main Injector

Aram Apyan¹, Brian Batell², Asher Berlin³, Nikita Blinov⁴, Caspian Chaharom⁵, Sergio Cuadra⁶, Zeynep Demiragli⁵, Adam Duran⁷, Yongbin Feng³, I.P. Fernando⁸, Stefania Gori⁹, Philip Harris⁶, Duc Hoang⁶, Dustin Keller⁸, Elizabeth Kowalczyk¹⁰, Monica Leys², Kun Liu¹¹, Ming Liu¹¹, Wolfgang Lorenzon¹², Petar Maksimovic¹³, Cristina Mantilla Suarez³, Hrachya Marukyan¹⁴, Amitav Mitra¹³, Yoshiyuki Miyachi¹⁵, Patrick McCormack⁶, Eric A. Moreno⁶, Yasser Corrales Morales¹¹, Noah Paladino⁶, Mudit Rai², Sebastian Rotella⁶, Luke Saunders⁵, Shinaya Sawada²¹, Carli Smith¹⁷, David Sperka⁵, **Rick Tesarek³**, Nhan Tran³, Yu-Dai Tsai¹⁸, Zijie Wan⁵, and Margaret Wynne¹²

¹Brandeis University, Waltham, MA 02453, USA ²University of Pittsburgh, Pittsburgh, PA 15260, USA ³Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ⁴University of Victoria, Victoria, BC V8P 5C2, Canada ⁵Boston University, Boston, MA 02215, USA ⁶Massachusetts Institute of Technology, Cambridge, MA 02139, USA ⁷San Francisco State University, San Francisco, CA 94132, USA ⁸University of Virginia, Charlottesville, VA 22904, USA ⁹University of California Santa Cruz, Santa Cruz, CA 95064, USA ¹⁰Michigan State University, East Lansing, Michigan 48824, USA ¹¹Los Alamos National Laboratory, Los Alamos, NM 87545, USA ¹²University of Michigan, Ann Arbor, MI 48109, USA ¹³Johns Hopkins University, Baltimore, MD 21218, USA ¹⁴Yamagata University, Yamagata, 990-8560, Japan ¹⁵KEK Tsukuba, Tsukuba, Ibaraki 305-0801 Japan ¹⁶Yerevan Physics Institute, Yerevan, 0036, Republic of Armenia ¹⁷Penn State University, State College, PA 16801, USA ¹⁸University of California Irvine, Irvine, CA 92697, USA

Collaboration

A strong team assembled of both experimentalists and theorists:

- One Snowmass paper: https://arxiv.org/pdf/ 2203.08322.pdf
- Strong connections with the current SpinQuest collaboration
- Welcome to join the effort! Contact us if interested! (yfeng@fnal.gov ntran@fnal.gov)

Aram Apyan¹, Brian Batell², Asher Berlin³, Nikita Blinov⁴, Caspian Chaharom⁵, Sergio Cuadra⁶, Zeynep Demiragli⁵, Adam Duran⁷, Yongbin Feng³, I.P. Fernando⁸, Stefania Gori⁹, Philip Harris⁶, Duc Hoang⁶, Dustin Keller⁸, Elizabeth Kowalczyk¹⁰, Monica Leys², Kun Liu¹¹, Ming Liu¹¹, Wolfgang Lorenzon¹², Petar Maksimovic¹³, Cristina Mantilla Suarez³, Hrachya Marukyan¹⁴, Amitav Mitra¹³, Yoshiyuki Miyachi¹⁵, Patrick McCormack⁶, Eric A. Moreno⁶, Yasser Corrales Morales¹¹, Noah Paladino⁶, Mudit Rai², Sebastian Rotella⁶, Luke Saunders⁵, Shinaya Sawada²¹, Carli Smith¹⁷, David Sperka⁵, **Rick Tesarek³**, Nhan Tran³, Yu-Dai Tsai¹⁸, Zijie Wan⁵, and Margaret Wynne¹²

¹Brandeis University, Waltham, MA 02453, USA ²University of Pittsburgh, Pittsburgh, PA 15260, USA ³Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ⁴University of Victoria, Victoria, BC V8P 5C2, Canada ⁵Boston University, Boston, MA 02215, USA ⁶Massachusetts Institute of Technology, Cambridge, MA 02139, USA ⁷San Francisco State University, San Francisco, CA 94132, USA ⁸University of Virginia, Charlottesville, VA 22904, USA ⁹University of California Santa Cruz, Santa Cruz, CA 95064, USA ¹⁰Michigan State University, East Lansing, Michigan 48824, USA ¹¹Los Alamos National Laboratory, Los Alamos, NM 87545, USA ¹²University of Michigan, Ann Arbor, MI 48109, USA ¹³Johns Hopkins University, Baltimore, MD 21218, USA ¹⁴Yamagata University, Yamagata, 990-8560, Japan ¹⁵KEK Tsukuba, Tsukuba, Ibaraki 305-0801 Japan ¹⁶Yerevan Physics Institute, Yerevan, 0036, Republic of Armenia ¹⁷Penn State University, State College, PA 16801, USA

¹⁸University of California Irvine, Irvine, CA 92697, USA

Summary

- Dark sector and light dark matter is an interesting yet not constrained region to explore DarkQuest offers a low-cost and near-term opportunity to uncover a broad range of MeV-GeV dark
- sectors
- Planned timeline: SpinQuest run (~2022) and aim to start dark sector exploration in 2023-2024!
- A lot of electronics design, simulation, and reconstruction studies ongoing

Back Up

120GeV Proton beam

 I20 GeV high-intensity proton beam from the Fermilab Accelerator Complex * Expect 10^{18} Protons on target (POT) in a 2-year parasitic run, and 10^{20} POT after the PIP-II accelerator upgrade

SpinQuest spectrometer

Dark (Hidden) Sector

Why DarkQuest: Connection with (g-2) Anomaly

- dump experiment
- Search for displaced decays of light muon-coupled mediators

A.Berlin, S.Gori, P.Schuster, N.Toro Arxiv:1804.00661

Large flux of secondary muons from pion decays traversing a thick target, which makes DarkQuest a muon beam

Accelerators

Relativistic production of dark sectors is less sensitive to loop- or velocity-suppression

Future Upgrade: DarkQuest -> LongQuest

ECAL, to further extend the coverage and sensitivity; explore this for Snowmass

• Future upgrades of DarkQuest - LongQuest: adding particle ID detector, new dump and new fast tracking, and