

1

Improved Asymptotic Formulae with an application to the Di-Higgs resonance search

Ligang Xia Nanjing University

SYSU-PKU Collider Physics Forum for Young Scientists 5th, June 8th, 2022

Di-Higgs production

Non-resonant production of double higgs events triple-higgs coupling strength, ...

Resonant production of double higgs events search for high-mass resonance, graviton, ...

Di-Higgs resonance search in ATLAS

The search has been performed in several final states.

- (H bb)(H γγ): low BR, clean, sensitive to low-mass resonances (< 1 TeV)
- (H bb)(H $\tau\tau$): sensitive to median-mass resonances
- (H bb)(H bb): high BR, dirty, sensitive to high-mass

Di-Higgs resonance search in ATLAS

Di-Higgs resonance search using bb $\gamma\gamma$ Search for HH resonance using (H bb, H $\gamma\gamma$) in ATLAS

- Multi-Variant-Analysis-based event selection:
 - training on many observables including

Statistical Interpretation

Statistical Interpretation

Summary of 6 Test statistics

Test statistic	Note
t _o	To establish the discovery of a signal
q ₀	To establish the discovery of a positive signal
tμ	To set an interval at a given confidence level
${\widetilde t}_\mu$	To set an interval for a positive signal at a given confidence level
q µ	To set <mark>an upper limit</mark> of a signal at a given confidence level
\widetilde{q}_{μ}	To set an upper limit of a positive signal at a given confidence level

Classical Asymptotic Formulae

Eur. Phys. J. C (2011) 71: 1554 DOI 10.1140/epjc/s10052-011-1554-0

Special Article - Tools for Experiment and Theory

THE EUROPEAN PHYSICAL JOURNAL C

arXiv:1007.17

Asymptotic formulae for likelihood-based tests of new physics

Glen Cowan¹, Kyle Cranmer², Eilam Gross³, Ofer Vitells^{3,a}

¹Physics Department, Royal Holloway, University of London, Egham TW20 0EX. UK

²Physics Department, New York University, New York, NY 1 ³Weizmann Institute of Science, Rehovot 76100, Israel

 TESTS OF STATISTICAL HYPOTHESES CONCERNING

 SEVERAL PARAMETERS WHEN THE NUMBER OF

 OBSERVATIONS IS LARGE(1)

 BY

 ABRAHAM WALD

 TABLE OF CONTENTS

 1. Introduction
 426

 2. Assumptions on the density function $f(x, \theta)$ 428

Likelihood ratio in a measurement

The likelihood function is the product of Poisson probabilities for all bins:

$$L(\mu,oldsymbol{ heta}) = \prod_{j=1}^N rac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} ~~ \prod_{k=1}^M rac{u_k^{m_k}}{m_k!} \, e^{-u_k} ~.$$

To test a hypothesized value of μ we consider the profile likelihood ratio

482 ABRAHAM WALD
same limit distribution. The limit distribution of
$$-2 \log \lambda_n$$
 is the χ^2 -distribu-
tion with r degrees of freedom if the hypothesis to be tested is true. If the
true parameter point θ_n is not an element of ω , the distribution of $-2 \log \lambda_n$
approaches the distribution of a sum of non-central squares
 $U^2 = u_1^2 + \cdots + u_r^2$,
where the variates u_1, \cdots, u_r are independently and normal ONE Small step
with unit variances and
 $\int_{p-r}^{r} (Eu_p)^2 = n \sum_{p-r} t_p (Eu_p)^2 = n \sum_{p-r}$

Wald's theorem

Here $\hat{\mu}$ follows a Gaussian distribution with a mean μ' and standard deviation σ , and N represents the data sample size. The standard deviation σ of $\hat{\mu}$ is obtained from the covariance matrix of the estimators for all the parameters, $V_{ij} = \operatorname{cov}[\hat{\theta}_i, \hat{\theta}_j]$, where here the θ_i represent

Example: $\widetilde{q_{\mu}}$

$$\tilde{q}_{\mu} = \begin{cases} 0 & \hat{\mu} > \mu ,\\ -2\ln\frac{\mathcal{L}(\mu,\hat{\hat{\theta}}(\mu))}{\mathcal{L}(\hat{\mu},\hat{\theta})} & \mu \ge \hat{\mu} \ge 0\\ -2\ln\frac{\mathcal{L}(\mu,\hat{\hat{\theta}}(\mu))}{\mathcal{L}(0,\hat{\hat{\theta}}(0))} & \hat{\mu} < 0 . \end{cases}$$

 $\tilde{q}_{\mu} = \begin{cases} 0 & \hat{\mu} > \mu ,\\ \frac{(\hat{\mu} - \mu)^2}{\sigma^2} & \mu \ge \hat{\mu} \ge 0 ,\\ \frac{\mu^2 - 2\mu\hat{\mu}}{\sigma^2} & \hat{\mu} < 0 . \end{cases}$

 $\hat{\mu} > \mu$: not inconsistent with upper limit mu $\hat{\mu} < 0$: assume non-negative signal strength and we compare with 0 Classic asymptotic

formulae

$$\begin{split} f(\tilde{q}_{\mu}|\mu') &= \Phi\left(\frac{\mu'-\mu}{\sigma}\right)\delta(\tilde{q}_{\mu}) \\ &+ \begin{cases} \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{\tilde{q}_{\mu}}}\exp\left[-\frac{1}{2}\left(\sqrt{\tilde{q}_{\mu}}-\frac{\mu-\mu'}{\sigma}\right)^{2}\right] & 0 < \tilde{q}_{\mu} \le \mu^{2}/\sigma^{2} \ , \\ \frac{1}{\sqrt{2\pi}(2\mu/\sigma)}\exp\left[-\frac{1}{2}\frac{(\tilde{q}_{\mu}-(\mu^{2}-2\mu\mu')/\sigma^{2})^{2}}{(2\mu/\sigma)^{2}}\right] & \tilde{q}_{\mu} > \mu^{2}/\sigma^{2} \ . \end{split}$$

q̃_{..} (900, μ≟ϑ.040)

Why "bumps" in PDF of
$$\tilde{q}_{\mu} = \begin{cases} 0 & \hat{\mu} > \mu , \\ \frac{(\hat{\mu}-\mu)^2}{\sigma^2} & \mu \ge \hat{\mu} \ge 0 , \\ \frac{\mu^2-2\mu\hat{\mu}}{\sigma^2} & \hat{\mu} < 0 . \end{cases}$$

Why "bumps" in PDF of $\widetilde{q_{\mu}}$? switch off

-0.02

-0.01

Systematics htemp htemp 269 Entries Entries 164 Mean 0.003182 0.002474 Mean Std Dev 0.007721 Std Dev 0.007181 n=1Things are clear if looking at the $\widehat{\mu}$ ____ distribution in -0.005 0.005 0.01 0.015 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 -0.01 0 0.02 POI muhat POI muhat toys for the POI muhat {raw status fit muhat==0 && nb events tov==2} POI_muhat {raw_status_fit_muhat==0 && POI_muhat>-10 && nb_events_toy==2} htemp htemp number of events 1187 Entries Entries 140 0.01078 Mean Mean 0.00905 Std Dev 0.01114 Std Dev 0.0102 120 = 1, 2, ... 100 n=2

0.02

0.01

0

0.03

0.04

0.05

POI muhat

0-0.01

-0.005

0

0.005

0.01

0.015 0.02

0.025

POI muhat

Why "bumps" in PDF of $\widetilde{q_{\mu}}$? switch off

POI muhat

POI muhat

Why "bumps" in PDF of \widetilde{C} $\log \mathcal{L} = \prod_{i=0}^{N} P(n_i | b_i + \mu s_i)$ $\log \mathcal{L} = \sum_{i=0}^{N} n_i \log(b_i + \mu s_i) - (b_i + \mu s_i)$

POI muhat

POI muhat

New Asymptotic Formulae

New Asymptotic Formulae

New Asymptotic Formula Farge statistics and small statistics

New Asymptotic Formula Arge statistics and small statistics

Comments on New Asymptotic • Still more of education value due to

- - How to choose n_{small}?
 - How many bins in the Small-Statistics part?
 - How to correct the Large-Statistics part if we want to be

Summary

- New asymptotic formulae proposed (work in progress)
 - Large-statistics part: described by classical asymptotic formulae
 - Small-statistics part: described by analytic/numerical calculation
- Application to a real case: di-higgs resonance search X HH bbyy
 - Look promising

 - Still some issues to be fixed
 More of education value for the mynemic for your

attention!