Studies on Higgs Boson Yukawa Couplings and Self-coupling at ATLAS

刘彦麟

密歇根大学

5/23/22

北京大学高能物理中心学术报告

Outline

- General introduction
- CP Property of the Top-quark Yukawa Coupling via ttH/tH ($H \rightarrow \gamma \gamma$): Yukawa coupling to 3rd generation fermion
- Search for SM H \rightarrow µµ: Yukawa coupling to 2nd generation fermion
- HH→bbττ and HH combination: Higgs boson trilinear self coupling

Standard Model

- A theoretical framework to • describe the elementary particles and their interactions
- The cornerstones of the SM: •
 - Gauge invariance (based on $SU(3) \times SU(2) \times U(1)$: depicting strong and electroweak interactions
 - > Higgs mechanism: trigger the EWSB; W, Z bosons and fermions acquire masses through EWSB; predicts the Higgs boson

Standard Model of Elementary Particles

interactions / force carriers ≈124.97 GeV/c² н С t u O 1/2 gluon higgs charm top up ≃4.7 MeV/c² ≈96 MeV/c² ≃4.18 GeV/c²

Higgs boson discovered in 2012

Higgs Boson

- SM Higgs boson: J^{CP} = O^{++;} neutral charge
- The measured mass: 125.09 ± 0.24 GeV (Run 1 ATLAS+CMS)

Since the discovery of the Higgs boson, measuring its property and coupling can be used as an approach to probe new physics beyond the SM, source of matter-antimatter asymmetry, etc

Yukawa Couplings and Self-coupling

- Higgs boson couples to fermions through Yukawa interactions
 - ➤ Giving masses to quarks and leptons
 - Coupling strength is proportional to fermion's mass
- Higgs potential: $V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$ > In SM, $\lambda \approx 0.13$ give m_H ≈ 125 GeV
- HH productions provide directly access to Higgs self-coupling $\kappa_{\lambda} (\lambda_{HHH} / \lambda_{SM})$

5/23/22

н

ATLAS Detector

Run 2 Dataset

- 139 fb⁻¹ of 13 TeV pp collision data collected for physics by the ATLAS detector during the LHC Run 2
- Great performance of ATLAS detector and operation of the LHC

LHC

CP Property of the Top-quark Yukawa Coupling via ttH/tH ($H \rightarrow \gamma \gamma$)

Why Doing This?

- Large matter-antimatter asymmetry in universe: crucial to look for additional CP violation sources
- First direct probe to the CP property of the top-Higgs Yukawa coupling (referred as t-H coupling later) using ttH and tH
 - Lagrangian written as: $\mathcal{L} = -\frac{m_t}{v} \{ \bar{\psi}_t \kappa_t [\cos(\alpha) + i \sin(\alpha) \gamma_5] \psi_t \} H$ κ_t (>0): coupling strength; α : CP-mixing angle
 In SM, $\kappa_t = 1$, $\alpha = 0$
- Any deviation observed can be a sign of new physics and account for the explanation of the observed matter-antimatter asymmetry

How to Probe this?

- The presence of a CP-odd component in the t-H coupling will have impact on
 - ➤ rate and kinematics of ggF process
 - \succ rate of H→γγ decay

5/23/22

➤ rate and kinematics of ttH and tH processes

- Measure the rate of ttH/tH processes and shapes of observables sensitive to the CP nature of the t-H coupling
 - Contributions from ggF and H→γγ constrained by the Higgs combination results

Why in $H \rightarrow \gamma \gamma$ Channel?

- γγ channel: small rate, but clean signature and good resolution; solid background estimation from data sideband
- $\gamma\gamma$ selection: two isolated photons with $p_T > 35/25$ GeV; 105 GeV < $m_{\gamma\gamma}$ < 160 GeV (fitting discriminant)
- ttH/tH selection: ≥1 b-tagged jet (77% eff.)
 - ➤ "Lep" region (≥1 W decay leptonically): ≥ 1 isolated electron or muon with $p_T > 15$ GeV
 - ➤ "Had" region (both tops decay hadronically): 0 selected lepton, ≥ 3 jets

BDT Methodology

- Selected events are categorized based on a twodimensional BDTs
- "Background Rejection BDT": trained to separate ttHlike events from $\gamma\gamma$ +jets and tt $\gamma\gamma$ background
- "CP BDT": trained to separate CP-even and CP-odd couplings using ttH and tH processes
- Training variables include p_T and η of $\gamma\gamma$ system and two top candidates (t1, t2); angular variables $\phi_{\gamma\gamma,t1}$ and $\phi_{\gamma\gamma,t2}$; angular separation variables $\Delta\eta_{t1t2}$ and $\Delta\phi_{t1t2}$; $m_{\gamma\gamma,t1}$, m_{t1t2} , etc

Event Categorization

• Categorization is done in Had and Lep regions separately

• The boundaries are chosen to achieve a strong separation between CP-even and CP-odd signals, as well as a good sensitivity to ttH process

Yanlin Liu

5/23/22

Signal and Background Modeling

- Total background includes resonant background (non-ttH Higgs) and continuum processes
- Signal and resonant background modeled by the double-sided crystal ball functions
- Continuum background modeled by one-parameter functions
 - Exponential function: $f(m_{\gamma\gamma}) = e^{c \cdot m_{\gamma\gamma}}$
 - ► Power Law function: $f(m_{\gamma\gamma}) = m_{\gamma\gamma}^c$

Choice based on $tt\gamma\gamma$ sample by applying stringent criteria on potential biases in the extracted signal yields

Significance for $ttH(\rightarrow \gamma \gamma)$

• Assuming CP-even coupling, the measured signal strength ($\mu = \sigma_{obs} / \sigma_{SM}$) for ttH via H $\rightarrow \gamma \gamma$ is:

$$\mu = 1.43 \begin{array}{c} +0.33 \\ -0.31 (stat.) \end{array} \begin{array}{c} +0.21 \\ -0.15 (sys.) \end{array}$$

• The background-only hypothesis is rejected with an observed (expected) significance is 5.2σ (4.4 σ)

The first time for ttH observation in single Higgs boson decay channel!

Results on CP-even and CP-odd

The measurements consistent with the SM prediction, and no sign of CP violation in the top-Yukawa interaction observed

Yanlin Liu

5/23/22

Exclusions for CP-odd Component

Yanlin Liu

- Likelihood scan of α with κ_t floating in the fit
- |α|>43° is excluded at 95% C.L.
- Pure CP-odd hypothesis is excluded at 3.9σ

The best exclusion result for CP-odd component search in the top-Yukawa interaction up to now!

5/23/22

Reported by <u>CERN Courier</u>

CERNCOURIER | Reporting on international high-energy physics

Physics 🗸	Technology 🗸	Community 🗸	In focus	Magazine

HIGGS AND ELECTROWEAK | NEWS

First foray into CP symmetry of top-Higgs interactions

4 May 2020

Search for $SM H \rightarrow \mu\mu$

Physics Motivation

- H→µµ: most promising channel to explore Yukawa coupling to the 2nd generation of fermions
 → H→cc not very sensible under the current luminosity
- Major challenge for H→µµ: low branching ratio and large irreducible background from Drell-Yan

5/23/22

Overview of Analysis Methodology

- Signal signatures: two isolated muons with opposite charge
- BDT-based categorization to enhance signal sensitivity
 Driven by the different Higgs boson production modes
- Data driven approach used for background estimation
- Signal+Background PDF used to fit the observed $m_{\mu\mu}$ spectra simultaneously in all the categories to derive the final signal strength μ (σ_{obs}/σ_{SM})

Signal and background modeled by analytic functions

Event Selection for H \rightarrow \mu\mu

- Single muon trigger with p_T threshold of 26 or 50 GeV

	Selection		
Common preselection	Primary vertex Two opposite-charge muons Muons: $ \eta < 2.7$, $p_{T}^{lead} > 27$ GeV, $p_{T}^{sublead} > 15$ GeV (except VH 3-lepton)		
Fit Region	$110 < m_{\mu\mu} < 160 \text{GeV}$		
Jets	$p_{\rm T} > 25 \text{ GeV}$ and $ \eta < 2.4$ or with $p_{\rm T} > 30 \text{ GeV}$ and $2.4 < \eta < 4.5$		
$t\bar{t}H$ Category VH 3-lepton Categories VH 4-lepton Category ggF +VBF Categories	at least one additional <i>e</i> or μ with $p_{\rm T} > 15$ GeV, at least one <i>b</i> -jet (85% WP) $p_{\rm T}^{\rm sublead} > 10$ GeV, one additional <i>e</i> (μ) with $p_{\rm T} > 15(10)$ GeV, no <i>b</i> -jets (85% WP) at least two additional <i>e</i> or μ with $p_{\rm T} > 8, 6$ GeV, no <i>b</i> -jets (85% WP) no additional μ , no <i>b</i> -jets (60% WP)		

Selected events sorted into 20 categories in total, which are mutually exclusive and in the order of $ttH(1) \rightarrow VH(3) \rightarrow VBF(4) \rightarrow ggF(12)$

ttH Categorization

Yanlin Liu

- Target semi/dileptonic decays of the top pair
 - ➢ Requiring ≥1 extra e/µ and ≥1 btagged jet
 - Two highest-p_T muons with opposite charge as the Higgs candidate
- BDT trained to distinguish ttH signal from all backgrounds (ttbar, ttZ, diboson, etc)

5/23/22

➤ Training variables: p_T of e/µ, invariant masses of leptons/tops, as well as jet and b-jet multiplicities, and H_T

VH Categorization

- Target WH/ZH in leptonic decays: requiring 1/2 additional leptons apart from the dimuon pair
- Two BDTs trained for 3-lepton and 4-lepton cases using invariant mass and angular variables of lepton systems as well as E_T^{miss} and jet multiplicity

Yanlin Liu

5/23/22

VBF/ggF Categorization (1)

 Events not selected into ttH or VH are classified into ojet, 1-jet and ≥2-jet regions

Veto events with any b-tagged jet or extra muon

- In the 2-jet region, first a BDT trained to disentangle VBF signal and background: 4 VBF categories defined
- 3 BDTs (ggF&VBF signals against bkg.) trained in each jet-multiplicity region to categorize the remaining events: 4 ggF categories defined based on each BDT
- Training variables: $p_T^{\mu\mu}$, $y_{\mu\mu}$, $\cos\theta^*$, p_T and η of jets, p_T^{jj} , y_{jj} , $\Delta\phi_{jj,\mu\mu}$, m_{jj} , etc

VBF/ggF Categorization (2)

- There are four groups of categories: VBF, ggF-2jet, ggF-1jet and ggF-0jet
- In each group, four categories are defined based on the signal purity

Signal Model

- Signal shape dominated by detector resolution
- Double-sided Crystal Ball function used to model signal
 - Gaussian core and power-law tails on both sides
- MC spectra created by summing over all production modes in each category
 - Relative normalization from SM assumed, negligible differences observed between modes

The signal fitting is performed for each category Crystal Ball width ranges from 2.6 to 3.2 GeV

Background Model

- A "core function" multiplied by an "empirical function" is used to model bkg. shape
 - Core function: a leading-order Drell-Yan line-shape convoluted with a Gaussian function mimicking detector resolution effects
 - Empirical function: used to correct for distortions of the mass shape and smaller background, either a Power law or Epoly function

Potential background mismodeling considered as systematic uncertainty ("spurious signal" referred SS)

H→μµ Results

- A simultaneous maximum-likelihood fit performed to the observed $m_{\mu\mu}$ spectra of in 20 categories
- The measured signal strength is:

Combined $\mu = 1.17 \pm 0.58(Stat.) + 0.18 \\ -0.13(sys.)$

 $= 1.17 \pm 0.58(Stat.) + 0.13 \\ -0.08(theo.) \pm 0.10(SS) + 0.07 \\ -0.03(exp.)$

- Results are statistical uncertainty dominated
- The observed (expected) significance is $2.0(1.7)\sigma$

Two papers during Run 2: <u>Phys. Rev. Lett. 119 (2017) 051802</u> (Editors' suggestion) and <u>Phys. Lett. B 812 (2021) 135980</u>

Reported by <u>CERN Press Release</u>

Voir en <u>français</u>

CERN experiments announce first indications of a rare Higgs boson process

The ATLAS and CMS experiments at CERN have announced new results which show that the Higgs boson decays into two muons

3 AUGUST, 2020

HH→*bbττ* and *HH* Combination

HH Production

SM non-resonant HH: σ^{ggF}_{HH} = 31.05 fb, σ^{VBF}_{HH} = 1.73 fb
 ➢ Direct access to Higgs self-coupling and potential

- Various BSM theories predict heavy resonances decaying into HH
 - Narrow width approximation
 - ➤ 2HDM as benchmark model

bbττ Final State

5/23/22

Di- τ Branching Ratios

- $bb\tau\tau$: 7.4%, 3rd largest BR, relatively clean signature compared to other channels with higher BR
- Performed in two channels depending on τ decay: $\tau_{had}\tau_{had}$ (42%) and $\tau_{had}\tau_{had}$ (45.6%)

Event Selection

• Signal signature: two b-jets (DNN-based tagger, 77%) and $\tau_{had}\tau_{had}/\tau_{lep}\tau_{had}$ with opposite charge

Signal region	Tau/Lepton	Trigger
$ au_{ m had} au_{ m had}$	2 hadronic τ	Single or Di-tau Trigger (STT/DTT)
$ au_{ m lep} au_{ m had} { m SLT}$	1 hadronic τ + 1 e/µ	Single lepton trigger (SLT)
$ au_{ m lep} au_{ m had} m LTT$	1 hadronic τ + 1 e/µ	Lepton+tau trigger (LTT)

- Trigger-dependent thresholds on $e/\mu/\tau_{had}$ and jets
- e/μ veto applied for $\tau_{had}\tau_{had}$; exactly 1 e/μ for $\tau_{lep}\tau_{had}$
- + $m_{\tau\tau}^{MMC} > 60$ GeV for all channels; $m_{bb} < 150$ GeV applied for $\tau_{lep}\tau_{had}$

Background Estimation

- ttbar with true τ_{had} : shape from simulation, normalization determined in the fit
- Z + heavy-flavor: shape from simulation, normalization from a dedicated Z(→ll)+heavy-flavor control region in the fit
- Single Higgs and other processes: estimated from simulation
- Jets \rightarrow fake τ_{had} background: estimated with datadriven approach (shown in next three slides)

Fake τ_{had} Background in $\tau_{lep}\tau_{had}$

- Fake factor (FF) derived for ttbar and multi-jet separately
 > Split in 1/3-prong and derived as a function of τ_{had} p_T
- Combined FFs applied to scale Anti-ID SR template to obtain fake τ_{had} background in SR

5/23/22
Fake τ_{had} Background in $\tau_{had}\tau_{had}$

- Different methods used for ttbar and multi-jet
 - \succ multi-jet: both τ_{had} are fake, FF method used
 - ➤ ttbar: predominantly only one reconstructed is τ_{had} fake, scale-factors method used

For multi-jet, FF derived in 1 b-tag same-sign CR Transfer factors (TFs) derived to account for extrapolation from 1 b-tag to 2 b-tag events

Fake τ_{had} Background in $\tau_{had}\tau_{had}$

- Fake τ_{had} from ttbar estimated using simulation
- Scale Factor (SF): used to correct τ_{had} misidentification efficiencies; determined by fitting the m_T^W distribution of MC to data in ttbar CR from $\tau_{lep}\tau_{had}$ SLT category
 - ➤ 1 prong: close to 1 below 40 GeV, ~0.6 above 70 GeV
 - ➤ 3 prong: ~20% larger than the 1 prong SFs

Non-resonant Signal Extraction

- MVA trained to separate SM signal and total background
 - $\succ \tau_{had} \tau_{had}$: BDT; $\tau_{lep} \tau_{had}$: neural network
 - ➢ Input variables: m_{HH}, m_{bb}, m^{MMC}_{ττ}, ΔR(b,b), ΔR(τ,τ), E^{miss}_T, Δφ(lτ,bb)...etc
 - Output scores used as final discriminant

5/23/22

Resonant Signal Extraction

Yanlin Liu

- Parametrized neural networks (PNN) used as discriminant
 - > Parametrized in mass of scalar ($\theta = m_X$)
 - Training variables same as nonresonant case
- Single classifier (per channel) for all considered m_X

Uncertainties

Yanlin Liu

Uncertainty source

Non-resonant HH

Data statistical	81%
Systematic	59%
$t\bar{t}$ and $Z + HF$ normalisations	4%
MC statistical	28%
Experimental	
Jet and $E_{\rm T}^{\rm miss}$	7%
<i>b</i> -jet tagging	3%
$ au_{ m had-vis}$	5%
Electrons and muons	2%
Luminosity and pileup	3%
Theoretical and modelling	
Fake- $\tau_{had-vis}$	9%
Top-quark	24%
$Z(\rightarrow \tau \tau) + \mathrm{HF}$	9%
Single Higgs boson	29%
Other backgrounds	3%
Signal	5%

- Breakdown of the relative contributions to the unc. in the extracted signal XS
- Data statistic unc. dominated for now
- Leading sys. sources:
 - ➤ MC statistical unc.
 - Theory unc. on top and single Higgs processes

Resonant HH \rightarrow **bb** $\tau\tau$ **Results**

Observed (expected) upper limits: 920-23 fb (840-12 fb) depending on the mass region Local (global) significance for 1 TeV is 3.0σ (2.0σ)

Results

HH Combination

- Performed statistical combination for different HH analyses to maximize sensitivity to HH production
- Resonant: including $bb\tau\tau$, $bb\gamma\gamma$ and bbbb
- Non-resonant: including $bb\tau\tau$ and $bb\gamma\gamma$
 - > $bb\tau\tau$ outperforms at around $\kappa_{\lambda} = 1$ due to more boosted signal and higher BR, while $bb\gamma\gamma$ outperforms at high κ_{λ} values due to high acceptance
- Systematics correlated where appropriate (like luminosity, flavor tagging, signal theory uncertainties, etc)

Resonant Combination Result

No statistically significant excess found, largest excess at 1.1 TeV: local (global) significance is 3.2σ (2.1 σ)

Yanlin Liu

Non-resonant Combination Result

The best constraints on HH signal strength and κ_λ to date!

Yanlin Liu

Reported by <u>CERN Courier</u>

CERNCOURIER | Reporting on international high-energy physics

Physics 🕶	Technology 🗸	Community 🗸	In focus	Magazine	

f y HIGGS AND ELECTROWEAK | NEWS

Extending the reach on Higgs' self-coupling

11 March 2022

HH+H combination aiming for Higgs Symposium: expected to provide the most sensitive results on κ_{λ} and κ_{2V} (VVHH coupling)

Summary

- Presented the Yukawa couplings and self-coupling studies based on the Run 2 dataset
- The measurements are in line with the SM prediction, and the most stringent results achieved at ATLAS
- The LHC Run 3 will provide more room for exploring the Yukawa couplings and HH processes
 - ➢ Possible evidence for H→µµ at ATLAS, observation combining ATLAS and CMS analyses

Particle Identifications at ATLAS

The main final-state particles used for the physics analysis: electron, muon, tau, jet, b-jet, and missing transverse energy E_T^{miss} Different types of particles interact with

certain sensitive subdetectors and give different responses in the experiments

Yanlin Liu

52

Fitting Procedure

- A simultaneous maximum-likelihood fit is performed to the observed $m_{\gamma\gamma}$ spectra in all the categories
- The likelihood model is parameterized into κ_t and $\alpha,$ which are the parameters of interest in the fit
- The parameters of the background model and background normalization in each category are left free in the fit
- All the systematic uncertainties are considered as nuisance parameters in the fit

Background Rejection and CP BDTs

The BDTs from Had region shown here as an example; contours contain 25% and 50% of the events

5/23/22

ttH/tH (H $\rightarrow \gamma\gamma$): Yield Parametrization

Systematic Uncertainties

- This analysis is dominated by statistical uncertainties of background events. The impact of systematic uncertainties on the results is found to be negligible. The main systematic sources:
 - Parton showering for ttH, tH and ggH (Pythia vs Herwig), < 10% in the most sensitive categories
 - For ggF, VBF and VH, a 100% theoretical uncertainty in the modeling of the radiation of additional heavy-flavor jets applied
 - > Experimental uncertainties from luminosity, trigger, lepton, photon, jet, b-tagging and E_T^{miss}
 - > Bias from potential background mis-modeling

Inclusive Data Spectra

Events and PDFs are weighted by ln(1+S/B) of each category, where S and B are calculated in the smallest $m_{\gamma\gamma}$ interval containing 90% of the signal

5/23/22

Prediction normalized to SM

Expected event yield

Display for a ttH(\rightarrow \gamma \gamma)-Like Event

5/23/22

$H \rightarrow \mu \mu$: FSR Recovery

VBF/ggF Categorization

Training variables used:
> o-jet: p_T^{μμ}, y_{μμ} and cosθ*
> 1-jet: o-jet variables + p_T^{j1}, η_{j1}, Δφ_{j1,μμ} and N_{track}^{j1}
> 2-jet: 1-jet + p_T^{j2}, η_{j2}, Δφ_{j2,μμ}, p_T^{jj}, y_{jj}, Δφ_{jj,μμ}, m_{jj}, E_T^{miss}, H_T and N_{track}^{j2}

Yanlin Liu

5/23/22

64

Categorization Performance (1)

Category	Data	$S_{ m SM}$	S	В	S/\sqrt{B}	S/B~[%]	$\sigma ~[{\rm GeV}]$
VBF Very High	15	2.81 ± 0.27	3.3 ± 1.7	14.5 ± 2.1	0.86	22.6	3.0
VBF High	39	3.46 ± 0.36	4.0 ± 2.1	32.5 ± 2.9	0.71	12.4	3.0
VBF Medium	112	4.8 ± 0.5	5.6 ± 2.8	85 ± 4	0.61	6.6	2.9
VBF Low	284	7.5 ± 0.9	9 ± 4	273 ± 8	0.53	3.2	3.0
2-jet Very High	1030	17.6 ± 3.3	21 ± 10	1024 ± 22	0.63	2.0	3.1
2-jet High	5433	50 ± 8	58 ± 30	5440 ± 50	0.77	1.0	2.9
2-jet Medium	18311	79 ± 15	90 ± 50	18320 ± 90	0.66	0.5	2.9
2-jet Low	36409	63 ± 17	70 ± 40	36340 ± 140	0.37	0.2	2.9
1-jet Very High	1097	16.5 ± 2.4	19 ± 10	1071 ± 22	0.59	1.8	2.9
1-jet High	6413	46 ± 7	54 ± 28	6320 ± 50	0.69	0.9	2.8
1-jet Medium	24576	90 ± 11	100 ± 50	24290 ± 100	0.67	0.4	2.7
1-jet Low	73459	125 ± 17	150 ± 70	73480 ± 190	0.53	0.2	2.8
0-jet Very High	15986	59 ± 11	70 ± 40	16090 ± 90	0.55	0.4	2.6
0-jet High	46523	99 ± 13	120 ± 60	46190 ± 150	0.54	0.3	2.6
0-jet Medium	91392	119 ± 14	140 ± 70	91310 ± 210	0.46	0.2	2.7
0-jet Low	121354	79 ± 10	90 ± 50	121310 ± 280	0.26	0.1	2.7
VH4L	34	0.53 ± 0.05	0.6 ± 0.3	24 ± 4	0.13	2.6	2.9
VH3LH	41	1.45 ± 0.14	1.7 ± 0.9	41 ± 5	0.27	4.2	3.1
VH3LM	358	2.76 ± 0.24	3.2 ± 1.6	347 ± 15	0.17	0.9	3.0
$t\bar{t}H$	17	1.19 ± 0.13	1.4 ± 0.7	15.1 ± 2.2	0.36	9.2	3.2

Calculated in the 120-130GeV region Major sensitive ones are VBF, ggF 2-jet and 1-jet categories

Categorization Performance (2)

Yanlin Liu

Category	$gg\mathrm{F}$	VBF	WH	ZH	$t\bar{t}H$
VBF Very High	6.6%	93.3%	0.0%	0.0%	0.0%
VBF High	12.8%	87.1%	0.0%	0.0%	0.0%
VBF Medium	21.3%	78.5%	0.1%	0.1%	0.0%
VBF Low	34.8%	64.8%	0.2%	0.2%	0.0%
2-jet Very High	82.0%	15.7%	1.2%	1.0%	0.2%
2-jet High	79.3%	16.0%	2.7%	1.8%	0.3%
2-jet Medium	80.7%	10.4%	5.4%	3.0%	0.5%
2-jet Low	78.2%	6.6%	8.8%	4.9%	1.5%
1-jet Very High	78.2%	21.2%	0.3%	0.3%	0.0%
1-jet High	88.2%	10.4%	0.9%	0.6%	0.0%
1-jet Medium	91.4%	6.1%	1.6%	0.9%	0.0%
1-jet Low	92.4%	3.8%	2.6%	1.2%	0.0%
0-jet Very High	94.1%	2.5%	1.4%	2.0%	0.0%
0-jet High	98.3%	1.0%	0.4%	0.3%	0.0%
0-jet Medium	99.1%	0.6%	0.2%	0.1%	0.0%
0-jet Low	99.5%	0.3%	0.1%	0.1%	0.0%
VH4L	0.0%	0.0%	0.1%	99.5%	0.4%
VH3LH	0.3%	0.1%	96.9%	2.6%	0.1%
VH3LM	4.2%	1.0%	80.8%	8.6%	5.3%
$t\bar{t}H$	0.1%	0.0%	1.5%	0.4%	98.0%

5/23/22

Signal decomposition by production mode in each category

The categories showhigh purity in theirtargeted productionmodes

66

H→µµ: Background Model

- A "core function" multiplied by an "empirical function" is used to model the background shape
 - Core function is a LO DY line-shape convoluted with a Gaussian function mimicking detector mass resolution effects
 - Empirical function is used to correct for distortions of the mass shape and smaller background
 Power law function: m^(a_0+a_1m_{\mu\mu}+a_2m^2_{\mu\mu}+...+a_Nm^N_{\mu\mu})

Epoly function: $exp(a_1m_{\mu\mu} + a_2m_{\mu\mu}^2 + ... + a_Nm_{\mu\mu}^N)$

- Spurious signal (SS) uncertainty: derived by using S+B PDF to fit the pure background templates
 - Fast-simulation DY used for ggF/VBF categories, while fullsim non-DY bkg. samples used for VH/ttH categories

Background Function in Each Category

Category	Empirical Function	$\max(SS/\delta S)[\%]$	$\max(SS/S_{SM})[\%]$
VBF Very High	Epoly 1	-20.3	-34.8
VBF High	Power0	11.7	20.0
VBF Medium	Power0	8.5	16.4
VBF Low	Power0	11.2	2.4
2-jet Very High	Power1	-13.3	-34.5
2-jet High	Epoly2	-19.8	-41.2
2-jet Medium	Power1	19.8	40.9
2-jet Low	Epoly3	2.1	8.0
1-jet Very High	Epoly2	21.9	-53.4
1-jet High	Epoly2	-7.8	-18.5
1-jet Medium	Power1	4.2	7.9
1-jet Low	Power1	17.3	51.5
0-jet Very High	Power1	19.2	50.9
0-jet High	Power1	-19.4	43.5
0-jet Medium	Power1	25.8	69.4
0-jet Low	Epoly3	-20.8	-100.4
VH4L	Power1	20.7	230
VH3LH	Epoly2	36.9	210
VH3LM	Epoly3	33.6	276
ttH	Power0	32.2	117

- All functions pass the pre-defined selection criteria with SS values under control
 - Chosen functions are typically with less degree of freedom comparing with EPS due to improved procedure

Systematic Uncertainties on Signals

- Theory uncertainties:
 - Branching ratio, QCD scale and PDF uncertainties on all production modes
 - Underlying event/Parton shower uncertainties on ggF/VBF
 - Heavy flavor uncertainty: 100% on ggF, VBF, and VH yields only in ttH category
- Experimental uncertainties:
 - > Muon momentum scale, resolution, and efficiencies
 - Electron/photon scale and resolution
 - > Jet energy scale/resolution, flavor tagging, quark-gluon tagging and E_T^{miss}
 - Luminosity, pileup reweighting, Run 1 LHC Higgs mass measurement uncertainty

Inclusive $m_{\mu\mu}$ Spectra

For figure on the right, events and PDFs are weighted by ln(1+S/B) of each category, where S and B are calculated within 120-130 GeV mass window

H→µµ: Results

- Measured signal strengths for five groups of categories
- Results are consistent with the SM prediction
- Compatibility between the signal strengths in the five groups is 20%

Display for a VBF (H\rightarrowµµ)-Like Event

• Higgs trilinear self-coupling (κ_{λ}) can be directly probed via HH

- $\kappa_{\!\lambda}$ also can be constrained through NLO EW correction of single Higgs processes

• ggF HH cross section depends on κ_{λ} and κ_{t}

• Any $(\kappa_{\lambda}, \kappa_t)$ can be obtained via a linear combination of three basis samples at different κ_{λ} values with $\kappa_t = 1$

$$sample(\kappa_{\lambda}, \kappa_{t}) = \kappa_{t}^{2} \left[\left(\kappa_{t}^{2} + \frac{\kappa_{\lambda}^{2}}{20} - \frac{399}{380} \kappa_{\lambda} \kappa_{t} \right) \cdot sample(0, 1) + \left(\frac{40}{38} \kappa_{\lambda} \kappa_{t} - \frac{2}{38} \kappa_{\lambda}^{2} \right) \cdot sample(1, 1) + \left(\frac{\kappa_{\lambda}^{2} - \kappa_{\lambda} \kappa_{t}}{380} \right) \cdot sample(20, 1) \right]$$

5/23/22

- VBF HH XS depends on $\kappa_{2V}, \kappa_{\lambda} and \kappa_{V}$
- A linear combination of 6 samples with different (κ_{2V} , κ_{λ} , κ_{V}) values
- Rank 1 basis used

$$\begin{pmatrix} \frac{\kappa_{2V}^2}{5} - \frac{\kappa_{2V}\kappa_V^2}{5} - \frac{\kappa_{2V}\kappa_V\kappa_\lambda}{10} + \frac{\kappa_V^3\kappa_\lambda}{10} \end{pmatrix} \times \sigma(3,1,1) + \\ \begin{pmatrix} \frac{4\kappa_{2V}^2}{5} - \frac{4\kappa_{2V}\kappa_V^2}{5} - \frac{12\kappa_{2V}\kappa_V\kappa_\lambda}{5} + \frac{12\kappa_V^3\kappa_\lambda}{5} \end{pmatrix} \times \sigma\left(\frac{1}{2},1,1\right) + \\ \begin{pmatrix} -\frac{5\kappa_{2V}\kappa_V^2}{4} + \frac{5\kappa_{2V}\kappa_V\kappa_\lambda}{4} + \frac{\kappa_V^3\kappa_\lambda}{8} - \frac{\kappa_V^2\kappa_\lambda^2}{8} \end{pmatrix} \times \sigma(1,2,1) + \\ \begin{pmatrix} -\kappa_{2V}\kappa_V^2 + \kappa_{2V}\kappa_V\kappa_\lambda + \kappa_V^4 - \kappa_V^3\kappa_\lambda \end{pmatrix} \times \sigma(0,0,1) + \\ \begin{pmatrix} \frac{\kappa_{2V}\kappa_V^2}{36} - \frac{\kappa_{2V}\kappa_V\kappa_\lambda}{36} - \frac{\kappa_V^3\kappa_\lambda}{72} + \frac{\kappa_V^2\kappa_\lambda^2}{72} \end{pmatrix} \times \sigma(1,10,1) + \\ \begin{pmatrix} -\kappa_{2V}^2 + \frac{29\kappa_{2V}\kappa_V^2}{9} + \frac{5\kappa_{2V}\kappa_V\kappa_\lambda}{18} - \frac{29\kappa_V^3\kappa_\lambda}{18} + \frac{\kappa_V^2\kappa_\lambda^2}{9} \end{pmatrix} \times \sigma(1,1,1) + \\ \end{pmatrix}$$

Triggers

- $au_{
 m lep} au_{
 m had}$ channel
 - > SLT (single e/ μ trigger): priority is given
 - *****Lowest un-prescaled, isolated with $p_T 20-26 \text{ GeV}$
 - ♦e: 60, 120, 140, 300 GeV supplementary non-isolated triggers
 - $\star\mu$: 50 and 60 GeV supplementary non-isolated triggers
 - LTT (lepton+τ trigger): checked if not passing SLT
 4 (17) GeV μ (e) + 25/35 GeV medium τ_{had}
- $au_{had} au_{had}$ channel
 - ▷ STT (single τ_{had} trigger): priority is given
 - \clubsuit 80, 125 and 160 GeV medium $\tau_{\rm had}$
 - ➢ DTT (di- τ_{had} trigger): checked if not passing STT
 ◆2 medium τ_{had} with $p_T > 35$ (25) GeV + 25 GeV L1 jet

Selection Criteria

$ au_{\rm had} au_{\rm had}$ category		$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm lep} \tau_{\rm had}$ categories					
STT	DTT	SLT	LTT					
e/μ selection								
No loose e/μ with $p_{\rm T} > 7$ GeV		Exactly one tig	Exactly one tight <i>e</i> or medium μ					
		$p_{\rm T}^e > 25, 27 { m ~GeV}$	$18 \text{ GeV} < p_{T}^{e} < \text{SLT cut}$					
		$p_{\rm T}^{\mu} > 21,27 { m ~GeV}$	15 GeV $< p_{\rm T}^{\mu} <$ SLT cut					
		$ \eta^e < 2.47$, not	$ \eta^e < 2.47$, not $1.37 < \eta^e < 1.52$					
		$ \eta^{\mu} $	$ \eta^{\mu} < 2.7$					
$ au_{ ext{had-vis}}$ selection								
Two loose $\tau_{had-vis}$		One loc	One loose $\tau_{had-vis}$					
$ \eta < 2.5$		$ \eta $	$ \eta < 2.3$					
$p_{\rm T} > 100, 140, 180 (25) {\rm GeV}$	$p_{\rm T} > 40 \; (30) \; {\rm GeV}$	$p_{\rm T} > 20 { m ~GeV}$	$p_{\rm T} > 30 { m ~GeV}$					
Jet selection								
≥ 2 jets with $ \eta < 2.5$								
$p_{\rm T} > 45 \; (20) \; {\rm GeV}$	Trigger dependent	$p_{\rm T} > 45 \; (20) \; {\rm GeV}$	Trigger dependent					
Event-level selection								
Trigger requirements passed								
Collision vertex reconstructed								
$m_{ au au}^{ m MMC}$ > 60 GeV								
Opposite-sign electric charges of $e/\mu/\tau_{had-vis}$ and $\tau_{had-vis}$								
Exactly two <i>b</i> -tagged jets								
$m_{bb} < 150 \text{ GeV}$								

5/23/22

Signal Acceptance × Efficiency

- The acceptance times efficiency for the non-resonant ggF+VBF evaluated w.r.t. targeted τ decay modes
 - $\succ \tau_{had} \tau_{had}$: 4.0%, $\tau_{lep} \tau_{had}$ SLT: 4.0%, $\tau_{lep} \tau_{had}$ LTT: 1.0%
- Around factor 2 improvement on signal acceptance compared with previous publication*
- Driven by improved reconstruction and identification of τ_{had} and b-jets**

*<u>Phys. Rev. Lett. 121, 191801</u>

5/23/22

**<u>ATL-PHYS-PUB-2017-003</u>, <u>ATL-PHYS-PUB-2017-013</u>, <u>ATL-PHYS-PUB-2019-033</u>

HL-LHC Projection

		Significar	nce $[\sigma]$	Combined signal	
Uncertainty scenario	$bar{b}\gamma\gamma$	$bar{b} au^+ au^-$	Combination	strength precision [%]	
No syst. unc.	2.3	4.0	4.6	-23/+23	
Baseline	2.2	2.8	3.2	-31/+34	
Theoretical unc. halved	1.1	1.7	2.0	-49/+51	
Run 2 syst. unc.	1.1	1.5	1.7	-57/+68	
Uncertainty scenario	Likelihood scan 1 σ CI Likelihood scan 2 σ CI				
No syst. unc.		[0.6, 1.5]		[0.3, 2.1]	
Baseline		[0.5, 1.6]		[0.0, 2.7]	
Theoretical unc. halved		[0.2, 2.2]		[-0.4, 5.6]	
Run 2 syst. unc.		[0.1, 2.5]		[-0.7, 5.7]	

ATL-PHYS-PUB-2022-005

κ_{λ} -dependence of XS and BR

Flavor Tagging Improvement

τ Identification Improvement

RNN ID shows 2x improvement compared with BDT Moved from "medium" to "loose" WP Per-tau efficiency: 1-prong: $75\% \rightarrow 85\%$ 3-prong: $60\% \rightarrow 75\%$

Variable	$ au_{ m had} au_{ m had}$	$ au_{\mathrm{lep}} au_{\mathrm{had}} \mathrm{SLT}$	$ au_{ m lep} au_{ m had}$ LTT
m _{HH}	1	✓	1
$m_{ au au}^{ m MMC}$	\checkmark	\checkmark	1
m _{bb}	\checkmark	1	1
$\Delta R(au, au)$	\checkmark	1	1
$\Delta R(b,b)$	\checkmark	1	
$\Delta p_{ m T}(\ell, au)$		1	1
Sub-leading <i>b</i> -tagged jet $p_{\rm T}$		1	
$m_{ m T}^W$		1	
$E_{\mathrm{T}}^{\mathrm{miss}}$		✓	
$\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \phi$ centrality		✓	
$\Delta \phi(\ell au, bb)$		1	
$\Delta \phi(\ell, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$			1
$\Delta \phi(\ell \tau, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$			1
S _T			1

5/23/22

5/23/22

5/23/22

New Small Wheel

5/23/22

Two types of technology adopted for triggering and precision tracking: small-strip Thin Gap Chambers (sTGC) and Micromegas detectors (MM)

sTGC Trigger Chain

Focusing on the trigger chain (red lines) work for sTGC, and responsible for the test/commissioning/debugging for the router boards (in total 256 router boards are assembled for two sides of the detector)

5/23/22